نتایج جستجو برای: clifford theory fischer

تعداد نتایج: 792103  

Journal: :bulletin of the iranian mathematical society 2013
j. moori t. seretlo

the non-split extension group $overline{g} = 5^3{^.}l(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in ly. the group $overline{g}$ in turn has l(3,5) and $5^2{:}2.a_5$ as inertia factors. the group $5^2{:}2.a_5$ is of order 3 000 and is of index 124 in l(3,5). the aim of this paper is to compute the fischer-clifford matrices of $overline{g}$, which together with associated parti...

Journal: :bulletin of the iranian mathematical society 2013
a. basheer j. moori

in this paper we first construct the non-split extension $overline{g}= 2^{6} {^{cdot}}sp(6,2)$ as a permutation group acting on 128 points. we then determine the conjugacy classes using the coset analysis technique, inertia factor groups and fischer matrices, which are required for the computations of the character table of $overline{g}$ by means of clifford-fischer theory. there are two inerti...

2015
Ayoub Basheer Mohammed Basheer Jamshid Moori

The present paper deals with a maximal subgroup of the Thompson group, namely the group 2 + A9 := G. We compute its conjugacy classes using the coset analysis method, its inertia factor groups and Fischer matrices, which are required for the computations of the character table of G by means of Clifford-Fischer Theory. AMS subject classifications: 20C15, 20C40

In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...

Journal: :bulletin of the iranian mathematical society 2015
a. b. m. basheer j. moori

in this paper we give some general results on the non-splitextension group $overline{g}_{n} = 2^{2n}{^{cdot}}sp(2n,2), ngeq2.$ we then focus on the group $overline{g}_{4} =2^{8}{^{cdot}}sp(8,2).$ we construct $overline{g}_{4}$ as apermutation group acting on 512 points. the conjugacy classes aredetermined using the coset analysis technique. then we determine theinertia factor groups and fischer...

Journal: :bulletin of the iranian mathematical society 2015
a. l. prins

the group $2^6{{}^{cdot}} g_2(2)$ is a maximal subgroup of the rudvalis group $ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. in this paper, we construct the character table of the group $2^6{{}^{cdot}} g_2(2)$ by using the technique of fischer-clifford matrices.

‎In our paper [A‎. ‎B‎. ‎M‎. ‎Basheer and J‎. ‎Moori‎, ‎On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors‎, ‎Fischer matrices and the ordinary character table of the split‎ ‎extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer‎ ‎Theory‎. ‎The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$‎ ‎is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{...

Journal: :international journal of group theory 2012
ayoub basheer mohammed basheer jamshid moori

‎in [u‎. ‎dempwolff‎, ‎on extensions of elementary abelian groups of order $2^{5}$ by $gl(5,2)$‎, ‎textit{rend‎. ‎sem‎. ‎mat‎. ‎univ‎. ‎padova}‎, ‎textbf{48} (1972)‎, ‎359‎ - ‎364.] dempwolff proved the existence of a group of the‎ ‎form $2^{5}{^{cdot}}gl(5,2)$ (a non split extension of the‎ ‎elementary abelian group $2^{5}$ by the general linear group‎ ‎$gl(5,2)$)‎. ‎this group is the second l...

Journal: :bulletin of the iranian mathematical society 0
a. l. prins department of‎ ‎mathematics‎, ‎faculty of military science, stellenbosch‎ university‎‎, ‎private bag x2, saldanha‎, ‎7395‎, ‎south africa.

the full automorphism group of $u_6(2)$ is a group of the form $u_6(2){:}s_3$. the group $u_6(2){:}s_3$ has a maximal subgroup $2^9{:}(l_3(4){:}s_3)$ of order 61931520. in the present paper, we determine the fischer-clifford matrices (which are not known yet) and hence compute the character table of the split extension $2^9{:}(l_3(4){:}s_3)$.

In this paper we give some general results on the non-splitextension group $overline{G}_{n} = 2^{2n}{^{cdot}}Sp(2n,2), ngeq2.$ We then focus on the group $overline{G}_{4} =2^{8}{^{cdot}}Sp(8,2).$ We construct $overline{G}_{4}$ as apermutation group acting on 512 points. The conjugacy classes aredetermined using the coset analysis technique. Then we determine theinertia factor groups and Fischer...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید