نتایج جستجو برای: classifying customers using data mining algorithms
تعداد نتایج: 5084649 فیلتر نتایج به سال:
classifying customers using data mining algorithms, enables banks to keep old customers loyality while attracting new ones. using decision tree as a data mining technique, we can optimize customer classification provided that the appropriate decision tree is selected. in this article we have presented an appropriate model to classify customers who use internet banking service. the model is deve...
due to extraordinary large amount of information and daily sharp increasing claimant for ui benefits and because of serious constraint of financial barriers, the importance of handling fraud detection in order to discover, control and predict fraudulent claims is inevitable. we use the most appropriate data mining methodology, methods, techniques and tools to extract knowledge or insights from ...
now-a-days graphic design plays a major role in influencing culture, society, business, and customers, in such a way that one could look upon every individual as a potential customer. graphic designers seek to identify customers needs and find an intelligent solution for them. correct identification and understanding of those needs is the first step towards achieving ones goals. marketing knowh...
Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...
this thesis is a study on insurance fraud in iran automobile insurance industry and explores the usage of expert linkage between un-supervised clustering and analytical hierarchy process(ahp), and renders the findings from applying these algorithms for automobile insurance claim fraud detection. the expert linkage determination objective function plan provides us with a way to determine whi...
Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
تحلیل تراکنشهای امانت و گردش منابع کتابخانههای دانشگاه علوم پزشکی بیرجند با الگوریتمهای دادهکاوی
Introduction: Data mining is a process for discovering meaningful relationships and patterns from data. Identify behavior patterns of libraries users can helps improve decision-making in libraries. This study aimed to analyze the interlibrary loan transactions in Birjand University of Medical Sciences using data mining algorithms. Methods: In this descriptive study, knowledge discovery and d...
185 Abstract— The concept of sequence Data Mining was first introduced by Rakesh Agrawal and Ramakrishnan Srikant in the year 1995. The problem was first introduced in the context of market analysis. It aimed to retrieve frequent patterns in the sequences of products purchased by customers through time ordered transactions. Later on its application was extended to complex applications like tele...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید