نتایج جستجو برای: chebyshev collocation method
تعداد نتایج: 1635109 فیلتر نتایج به سال:
In this paper, a Chebyshev spectral collocation domain decomposition (DD) semidiscretization by using a grid mapping, derived by Kosloff and Tal-Ezer in space is applied to the numerical solution of the generalized Burger’s–Huxley (GBH) equation. To reduce roundoff error in computing derivatives we use the above mentioned grid mapping. In this work, we compose the Chebyshev spectral collocation...
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
in this paper, the chebyshev spectral collocation method(cscm) for one-dimensional linear hyperbolic telegraph equation is presented. chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. a straightforward implementation of these methods involves the use of spectral differentiation matrices. firstly, we transform ...
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...
A numerical approximation of the initial-boundary system of nonlinear hyperbolic equations based on spectral collocation method is presented in this article. A Chebyshev-Gauss-Radau collocation (C-GR-C) method in combination with the implicit RungeKutta scheme are employed to obtain highly accurate approximations to the mentioned problem. The collocation points are the Chebyshev interpolation n...
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
the numerical methods are of great importance for approximating the solutions of nonlinear ordinary or partial differential equations, especially when the nonlinear differential equation under consideration faces difficulties in obtaining its exact solution. in this latter case, we usually resort to one of the efficient numerical methods. in this paper, the chebyshev collocation method is sugge...
A spectral collocation method based on rational interpolants and adaptive grid points is presented. The rational interpolants approximate analytic functions with exponential accuracy by using prescribed barycentric weights and transformed Chebyshev points. The locations of the grid points are adapted to singularities of the underlying solution, and the locations of these singularities are appro...
The purpose of this paper is to investigate the use of rational Chebyshev (RC) collocation method for solving high-order linear ordinary differential equations with variable coefficients. Using the rational Chebyshev collocation points, this method transforms the high-order linear ordinary differential equations and the given conditions to matrix equations with unknown rational Chebyshev coeffi...
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید