نتایج جستجو برای: central p
تعداد نتایج: 1692181 فیلتر نتایج به سال:
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
this research is about the political economy of china in central asia. in this research the political & economic interactions affected on chinas political economy in central asia are examined. chinas goal of presence in central asia including political-security, economic and energy goals is described in one part. in another part, the trade relations between china and central asian countries ar...
let $g$ be a finite $p$-soluble group, and $p$ a sylow $p$-subgroup of $g$. it is proved that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are contained in the $k$-th term of the upper central series of $p$, then the $p$-length of $g$ is at most $2m+1$, where $m$ is the greatest integer such that $p^m-p^{m-1}leq k$, and the exponent of the image of $p$...
let $g$ be a finite $p$-soluble group, and $p$ a sylow $p$-sub-group of $g$. it is proved that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are contained in the $k$-th term of the upper central series of $p$, then the $p$-length of $g$ is at most $2m+1$, where $m$ is the greatest integer such that $p^m-p^{m-1}leq k$, and the exponent of the image of $p$...
here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. also we find integers $n$ for which, these groups are $n$-central.
Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید