نتایج جستجو برای: catholyte

تعداد نتایج: 197  

2017
Irene Merino Jimenez John Greenman Ioannis Ieropoulos

The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic MFCs can be attributed to a combination of water or hydrogen peroxide formation from the oxygen reduction reaction in the cathode, water diffusion and electroosmotic d...

Journal: :Bioresource technology 2013
Yongtae Ahn Bruce E Logan

Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into th...

2012

This study investigated the removal efficiency of electrokinetic remediation of copper-contaminated soil at different combinations of enhancement reagents used as anolyte and catholyte. Sodium hydroxide (at 0.1, 0.5, and 1.0 M concentrations) and distilled water were used as anolyte, while lactic acid (at 0.01, 0.1, and 0.5 M concentrations), ammonium citrate (also at 0.01, 0.1, and 0.5 M conce...

Journal: :Environmental science & technology 2010
Jeffrey J Fornero Miriam Rosenbaum Michael A Cotta Largus T Angenent

Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon d...

2016
Iwona Gajda John Greenman Chris Melhuish Ioannis A. Ieropoulos

This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholy...

2016
Ying Liu Mohan Qin Shuai Luo Zhen He Rui Qiao

We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to aci...

2012
Joo-Youn Nam Bruce E. Logan

The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3.3 0.4 mol H2/mole acetate and gas production rate of 2.2 0.2 m H2/m/d were achieved here with an initial anolyte pH 1⁄4 9 and catholyte NaCl concentrati...

2013
Robert J. Davis Younggy Kim Bruce E. Logan

A microbial desalination cell (MDC) uses exoelectrogenic bacteria to oxidize organic matter while desalinating water. Protons produced from the oxidation of organics at the anode result in anolyte acidification and reduce performance. A new method was used here to mitigate anolyte acidification based on adding non-buffered saline catholyte effluent from a previous cycle to the anolyte at the be...

2011
Joo-Youn Nam Bruce E. Logan

High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 12 A/m, hydrogen yield of 3.2 0.3 mol H2/mol acetat...

2017
Irene Merino-Jimenez Veronica Celorrio David J. Fermin John Greenman Ioannis Ieropoulos

Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH4PO4·6H2O) crystals naturally precipitate in urine, but this reaction can be enhanced by the introduction of additional magnesium. In this work, the effect of magnesiu...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید