نتایج جستجو برای: bi gyrovector space
تعداد نتایج: 537824 فیلتر نتایج به سال:
the aim of this article is to extend the study of the lorentz transformation of order (m,n) from m=1 and n>=1 to all m,n>=1, obtaining algebraic structures called a bi-gyrogroup and a bi-gyrovector space. a bi-gyrogroup is a gyrogroup each gyration of which is a pair of a left gyration and a right gyration. a bi-gyrovector space is constructed from a bi-gyrocommutative bi-gyrogroup that admits ...
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
in this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional euclidean space, which are the einstein and möbius gyrovector spaces. we introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and see its interest...
In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces, which are the Einstein and M"{o}bius gyrovector spaces. We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...
We show that the algebra of the group SL(2; C) naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. The superiority of the use of the gyrogroup formalism over the use of theSL(2; C) formalism for dealing with the Lorentz group in some cases is indicated by (i) the validity of gyrogroups and gyrovector spaces...
in this paper, we consider a generalization of the real normed spaces and give some examples.
Following a brief review of the history of the link between Einstein’s velocity addition law of special relativity and the hyperbolic geometry of Bolyai and Lobachevski, we employ the binary operation of Einstein’s velocity addition to introduce into hyperbolic geometry the concepts of vectors, angles and trigonometry. In full analogy with Euclidean geometry, we show in this article that the in...
Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive ob...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید