نتایج جستجو برای: berwald
تعداد نتایج: 137 فیلتر نتایج به سال:
We show that the holonomy invariance of a function on the tangent bundle of a manifold, together with very mild regularity conditions on the function, is equivalent to the existence of local parallelisms compatible with the function in a natural way. Thus, in particular, we obtain a characterization of generalized Berwald manifolds. We also construct a simple example of a generalized Berwald ma...
The starting point of the famous structure theorems on Berwald spaces due to Z.I. Szabó [4] is an observation on the Riemann-metrizability of positive definite Berwald manifolds. It states that there always exists a Riemannian metric on the underlying manifold such that its Levi-Civita connection is just the canonical connection of the Berwald manifold. In this paper we present a new elementary...
In this paper we study the two-dimensional complex Finsler spaces with (α, β)-metrics by using the complex Berwald frame. A special approach is dedicated to the complex Berwald spaces with (α, β) metrics. We establish the necessary and sufficient condition so that the complex Randers and Kropina spaces should be complex Berwald spaces, and we will illustrate the existence of these spaces in som...
Berwald metrics are particular Finsler metrics which still have linear Berwald connections. Their complete classification is established in an earlier work, [Sz1], of this author. The main tools in these classification are the Simons-Berger holonomy theorem and the Weyl-group theory. It turnes out that any Berwald metric is a perturbed-Cartesian product of Riemannian, Minkowski, and such non-Ri...
In Theorem 1, we generalize some results of Szabó [Sz1, Sz2] for Berwald metrics that are not necessarily strictly convex: we show that for every Berwald metric F there always exists a Riemannian metric affine equivalent to F . As an application we show (Corollary 3) that every Berwald projectively flat metric is a Minkowski metric; this statement is a “Berwald” version of Hilbert’s 4th problem...
Recently the present authors introduced a general class of Finsler connections which leads to a smart representation of connection theory in Finsler geometry and yields to a classification of Finsler connections into the three classes. Here the properties of one of these classes namely the Berwald-type connections which contains Berwald and Chern(Rund) connections as a special case is studied. ...
We investigate the notions of a connection of Finsler type and of Berwald type on the first jet bundle J1π of a manifold E which is fibred over IR. Such connections are associated to a given horizontal distribution on the bundle π0 1 : J 1π → E, which in particular may come from a time-dependent system of second-order ordinary differential equations. In order to accomodate three existing constr...
In this paper we investigate the problem what kind of (two-dimensional) Finsler manifolds have a conformal change leaving the mixed curvature of the Berwald connection invariant? We establish a differential equation for such Finslerian energy functions and present the solutions under some simplification. As we shall see they are essentially the same as the singular Finsler metrics with constant...
The space of the associative commutative hyper complex numbers, H4, is a 4-dimensional metric Finsler space with the Berwald-Moor metric. It provides the possibility to construct the tensor fields on the base of the analytical functions of the H4 variable and also in case when this analyticity is broken. Here we suggest a way to construct the metric tensor of a 4-dimensional pseudo Riemannian s...
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید