نتایج جستجو برای: baer module
تعداد نتایج: 67302 فیلتر نتایج به سال:
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
let r be a ring, be an endomorphism of r and mr be a -rigid module. amodule mr is called quasi-baer if the right annihilator of a principal submodule of r isgenerated by an idempotent. it is shown that an r-module mr is a quasi-baer module if andonly if m[[x]] is a quasi-baer module over the skew power series ring r[[x; ]].
Let $R$ be a ring and $M$ be a right $R$-module. In this paper, we give some properties of self-cogeneratormodules. If $M$ is self-cogenerator and $S = End_{R}(M)$ is a cononsingular ring, then $M$ is a$mathcal{K}$-module. It is shown that every self-cogenerator Baer is dual Baer.
A module MR is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal submodule of R is generated by an idempotent. Let R be a ring. Let α be an endomorphism of R and MR be a α-compatible module and T = R[[x;α]]. It is shown that M [[x]]T is right p.q.-Baer if and only if MR is right p.q.-Baer and the right annihilator of any countably-generated ...
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.
let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.
let $n$ be a submodule of a module $m$ and a minimal primary decomposition of $n$ is known. a formula to compute baer's lower nilradical of $n$ is given. the relations between classical prime submodules and their nilradicals are investigated. some situations in which semiprime submodules can be written as finite intersection of classical prime submodule are stated.
For a given class of R-modules Q, module M is called Q-copure Baer injective if any map from left ideal R into can be extended to M. Depending on the this concept both dualization and generalization pure injectivity. We show that every embedded as submodule module. Certain types rings are characterized using properties modules. example ring Q-coregular only R-module injective.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید