نتایج جستجو برای: autoregressive model

تعداد نتایج: 2108192  

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...

Journal: :اقتصاد و توسعه کشاورزی 0
محمد قهرمان زاده خدیجه الفی

agriculture as one of the major economic sectors of iran, has an important role in gross domestic production by providing about 14% of gdp. this study attempts to forecast the value of the agriculture gdp using periodic autoregressive model (par), as the new seasonal time series techniques. to address this aim, the quarterly data were collected from march 1988 to july 1989. the collected data w...

 We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models, among which the autoregressive model of order one (AR (1))...

2017
George Papamakarios Iain Murray Theo Pavlakou

Autoregressive models are among the best performing neural density estimators. We describe an approach for increasing the flexibility of an autoregressive model, based on modelling the random numbers that the model uses internally when generating data. By constructing a stack of autoregressive models, each modelling the random numbers of the next model in the stack, we obtain a type of normaliz...

Journal: :Signal Processing 2002
Hiroko Kato Tohru Ozaki

A nonlinear autoregressive model, the process feedback nonlinear autoregressive (PFNAR) model, in which the autoregressive coe0cients are a function of the combination of past data, is proposed. The autoregressive coe0cients of the PFNAR model consist of sequential autoregressive parts, and a data process feedback part that feeds back the in2uence from previous data points with “signi4cant dela...

2002
Anders Rahbek Neil Shephard

In this paper we develop a time series model which allows long-term disequilibriums to have epochs of non-stationarity, giving the impression that long term relationships between economic variables have temporarily broken down, before they endogenously collapse back towards their long term relationship. This autoregressive root model is shown to be ergodic and covariance stationary under some r...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید