نتایج جستجو برای: automorphism group
تعداد نتایج: 981740 فیلتر نتایج به سال:
in this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. with this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. n(g) and s(g) are the set of all nilpotency classes and the set of all solvability classes for the group g with respect to different automorphi...
let $g$ be a $p$-group of order $p^n$ and $phi$=$phi(g)$ be the frattini subgroup of $g$. it is shown that the nilpotency class of $autf(g)$, the group of all automorphisms of $g$ centralizing $g/ fr(g)$, takes the maximum value $n-2$ if and only if $g$ is of maximal class. we also determine the nilpotency class of $autf(g)$ when $g$ is a finite abelian $p$-group.
the coprime graph $gg$ with a finite group $g$ as follows: take $g$ as the vertex set of $gg$ and join two distinct vertices $u$ and $v$ if $(|u|,|v|)=1$. in the paper, we explore how the graph theoretical properties of $gg$ can effect on the group theoretical properties of $g$.
let $g$ be a $p$-group of order $p^n$ and $phi$=$phi(g)$ be the frattini subgroup of $g$. it is shown that the nilpotency class of $autf(g)$, the group of all automorphisms of $g$ centralizing $g/ fr(g)$, takes the maximum value $n-2$ if and only if $g$ is of maximal class. we also determine the nilpotency class of $autf(g)$ when $g$ is a finite abelian $p$-group.
suppose $gamma$ is a graph with $v(gamma) = { 1,2, cdots, p}$and $ mathcal{f} = {gamma_1,cdots, gamma_p} $ is a family ofgraphs such that $n_j = |v(gamma_j)|$, $1 leq j leq p$. define$lambda = gamma[gamma_1,cdots, gamma_p]$ to be a graph withvertex set $ v(lambda)=bigcup_{j=1}^pv(gamma_j)$ and edge set$e(lambda)=big(bigcup_{j=1}^pe(gamma_j)big)cupbig(bigcup_{ijine(gamma)}{uv;uin v(gamma_i),vin ...
let $g$ be a group and $a=aut(g)$ be the group of automorphisms of $g$. then the element $[g,alpha]=g^{-1}alpha(g)$ is an autocommutator of $gin g$ and $alphain a$. also, the autocommutator subgroup of g is defined to be $k(g)=langle[g,alpha]|gin g, alphain arangle$, which is a characteristic subgroup of $g$ containing the derived subgroup $g'$ of $g$. a group is defined...
a recursive-circulant $g(n; d)$ is defined to be acirculant graph with $n$ vertices and jumps of powers of $d$.$g(n; d)$ is vertex-transitive, and has some strong hamiltonianproperties. $g(n; d)$ has a recursive structure when $n = cd^m$,$1 leq c < d $ [10]. in this paper, we will find the automorphismgroup of some classes of recursive-circulant graphs. in particular, wewill find that the autom...
motivated by a celebrated theorem of schur, we show that if~$gamma$ is a normal subgroup of the full automorphism group $aut(g)$ of a group $g$ such that $inn(g)$ is contained in $gamma$ and $aut(g)/gamma$ has no uncountable abelian subgroups of prime exponent, then $[g,gamma]$ is finite, provided that the subgroup consisting of all elements of $g$ fixed by $gamma$ has finite index. so...
in this paper we study the coprime graph of a group $g$. the coprime graph of a group $g$, is a graph whose vertices are elements of $g$ and two distinct vertices $x$ and $y$ are adjacent iff $(|x|,|y|)=1$. in this paper we classify all the groups which the coprime graph is a complete r-partite graph or a planar graph. also we study the automorphism group of the coprime graph.
In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید