نتایج جستجو برای: augmented zagreb index
تعداد نتایج: 447834 فیلتر نتایج به سال:
let $gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. denote by $upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. in the classes of graphs $gamma_{n,kappa}$ and $upsilon_{n,beta}$, the elements having maximum augmented zagreb index are determined.
The augmented eccentric connectivity index of a graph which is a generalization of eccentric connectivity index is defined as the summation of the quotients of the product of adjacent vertex degrees and eccentricity of the concerned vertex of a graph. In this paper we established some relationships between augmented eccentric connectivity index and several other graph invariants like number of ...
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
let g be a simple connected graph. the first and second zagreb indices have been introducedas vv(g)(v)2 m1(g) degg and m2(g) uve(g)degg(u)degg(v) , respectively,where degg v(degg u) is the degree of vertex v (u) . in this paper, we define a newdistance-based named hyperzagreb as e uv e(g) .(v))2 hm(g) (degg(u) degg inthis paper, the hyperzagreb index of the cartesian product...
in this paper, the hyper - zagreb index of the cartesian product, composition and corona product of graphs are computed. these corrects some errors in g. h. shirdel et al.[11].
The augmented Zagreb index (AZI) has attracted more and attentions in the past years. Some significant mathematical properties of AZI were obtained. In particular, Lin et al. [MATCH Commun. Math. Comput. Chem. 83 (2020) 167] recently claimed a complete solution to problem characterizing n-vertex tree(s) with maximal AZI. this note we correct some errors paper.
the first zagreb index $m_1$ of a graph $g$ is equal to the sum of squaresof degrees of the vertices of $g$. goubko proved that for trees with $n_1$pendent vertices, $m_1 geq 9,n_1-16$. we show how this result can beextended to hold for any connected graph with cyclomatic number $gamma geq 0$.in addition, graphs with $n$ vertices, $n_1$ pendent vertices, cyclomaticnumber $gamma$, and minimal $m...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید