نتایج جستجو برای: atf6
تعداد نتایج: 724 فیلتر نتایج به سال:
The endoplasmic reticulum (ER)-transmembrane proteins, ATF6 and ATF6 , are cleaved during the ER stress response (ERSR). The resulting N-terminal fragments (N-ATF6 and N-ATF6 ) have conserved DNA-binding domains and divergent transcriptional activation domains. N-ATF6 and N-ATF6 translocate to the nucleus, bind to specific regulatory elements, and influence expression of ERSR genes, such as glu...
RATIONALE Endoplasmic reticulum (ER) stress causes the accumulation of misfolded proteins in the ER, activating the transcription factor, ATF6 (activating transcription factor 6 alpha), which induces ER stress response genes. Myocardial ischemia induces the ER stress response; however, neither the function of this response nor whether it is mediated by ATF6 is known. OBJECTIVE Here, we examin...
ATF6 is an endoplasmic reticulum (ER) membrane-bound transcription factor that regulates various cellular functions. The purpose of this study was to investigate the role of ATF6 in odontoblast differentiation. Rat tooth germs were isolated, changes in gene expression were evaluated over time, and localization of ATF6 was determined by immunohistochemistry. Human dental pulp cells (HDPCs) were ...
BACKGROUND We reported earlier that X-box binding protein1 spliced (XBP1S), a key regulator of the unfolded protein response (UPR), as a bone morphogenetic protein 2 (BMP2)-inducible transcription factor, positively regulates endochondral bone formation by activating granulin-epithelin precursor (GEP) chondrogenic growth factor. Under the stress of misfolded or unfolded proteins in the endoplas...
Stresses that perturb the folding of nascent endoplasmic reticulum (ER) proteins activate the ER stress response. Upon ER stress, ER-associated ATF6 is cleaved; the resulting active cytosolic fragment of ATF6 translocates to the nucleus, binds to ER stress response elements (ERSEs), and induces genes, including the ER-targeted chaperone, GRP78. Recent studies showed that nutrient and oxygen sta...
Mammalian transcription factor ATF6 is constitutively synthesized as a type II transmembrane protein embedded in the endoplasmic reticulum (ER). Upon ER stress ATF6 is transported to the Golgi apparatus where it is cleaved to release its cytoplasmic domain. This is then translocated into the nucleus where it activates transcription of ER-localized molecular chaperones and folding enzymes to mai...
Activating transcription factor 6 (ATF6) and sterol regulatory element-binding proteins (SREBPs) are activated by proteolytic cleavage. The ensuing nuclear translocation of their N-termini (i.e., ATF6(N) and SREBP(N)) activates the respective target genes involved in unfolded protein response and lipogenesis. Here, we report that glucose deprivation activated ATF6 but suppressed the SREBP2-regu...
Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To...
A nodal regulator of endoplasmic reticulum stress is the transcription factor, ATF6, which is activated by ischemia and protects the heart from ischemic damage, in vivo. To explore mechanisms of ATF6-mediated protection in the heart, a whole-genome microRNA (miRNA) array analysis of RNA from the hearts of ATF6 transgenic (TG) mice was performed. The array identified 13 ATF6-regulated miRNAs, ei...
ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivati...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید