نتایج جستجو برای: multiplicative zagreb index
تعداد نتایج: 411227 فیلتر نتایج به سال:
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we investigate Zagreb indices of bicyclic graphs with a given matching number. Sharp upper bounds for the first and second Zagreb indices of bicyclic graphs in terms of the...
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we study the Zagreb indices of n-vertex connected graphs with k cut vertices, the upper bound for M1and M2-values of n-vertex connected graphs with k cut vertices are deter...
The study of the maximum and minimal characteristics graphs is focus significant field mathematics known as extreme graph theory. Finding biggest or smallest that meet specified criteria main goal this discipline. There are several applications extremal theory in various fields, including computer science, physics, chemistry. Some important include: Computer networking, social chemistry physics...
We investigate the Zagreb index, one of the topological indices, of random recursive trees in this paper. Through a recurrence equation, the first two moments of Zn, the Zagreb index of a random recursive tree of size n, are obtained. We also show that the random process {Zn − E[Zn], n ≥ 1} is a martingale. Then the asymptotic normality of the Zagreb index of a random recursive tree is given by...
The Zagreb indices are among the oldest and the most famous topological molecular structure-descriptors. The first Zagreb index is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper, we characterize the extremal graphs with maximal, sec...
The first general Zagreb index is defined as Mλ 1 (G) = ∑ v∈V (G) dG(v) λ where λ ∈ R − {0, 1}. The case λ = 3, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as EMλ 1 (G) = ∑ e∈E(G) dG(e) λ and the reformulated F-index is RF (G) = ∑ e∈E(G) dG(e) 3. In this paper, we compute the reformulated F-index for some graph operations.
For a (molecular) graph, the hyper Zagreb index is defined as HM(G) = ∑ uv∈E(G) (dG(u) + dG(v)) 2 and the hyper Zagreb coindex is defined asHM(G) = ∑ uv/ ∈E(G) (dG(u)+dG(v)) 2. In this paper, the hyper Zagreb indices and its coindices of edge corona product graph, double graph and Mycielskian graph are obtained.
In this paper we study the first Zagreb index in bucket recursive trees containing buckets with variable capacities. This model was introduced by Kazemi in 2012. We obtain the mean and variance of the first Zagreb index and introduce a martingale based on this quantity.
The hyper-Zagreb index of a connected graph G, denoted by HM(G), is defined as HM(G) = ∑ uv∈E(G) [dG(u) + dG(v)] where dG(z) is the degree of a vertex z in G. In this paper, we study the hyper-Zagreb index of four operations on graphs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید