Let Cb(K) be the set of all bounded continuous (real or complex) functions on a complete metric space K and A a closed subspace of Cb(K). Using the variational method, it is shown that the set of all strong peak functions in A is dense if and only if the set of all strong peak points is a norming subset of A. As a corollary we show that if X is a locally uniformly convex, complex Banach space, ...