نتایج جستجو برای: multiplicative zagreb index
تعداد نتایج: 411227 فیلتر نتایج به سال:
The edge version of traditional first Zagreb index is known as first reformulated Zagreb index. In this paper, we analyze and compare various lower and upper bounds for the first reformulated Zagreb index and we propose new lower and upper bounds which are stronger than the existing and recent results [Appl. Math. Comp. 273 (2016) 16-20]. In addition, we prove that our bounds are superior in co...
Topological indices are the mathematical tools that correlate the chemical structure with various physical properties, chemical reactivity or biological activity numerically. A topological index is a function having a set of graphs as its domain and a set of real numbers as its range. In QSAR/QSPR study, a prediction about the bioactivity of chemical compounds is made on the basis of physico-ch...
In this paper, the Hyper - Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These corrects some errors in G. H. Shirdel et al.[11].
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
The first reformulated Zagreb index $EM_1(G)$ of a simple graph $G$ is defined as the sum of the terms $(d_u+d_v-2)^2$ over all edges $uv$ of $G .$ In this paper, the various upper and lower bounds for the first reformulated Zagreb index of a connected graph interms of other topological indices are obtained.
wiener index is a topological index based on distance between every pair of vertices in agraph g. it was introduced in 1947 by one of the pioneer of this area e.g, harold wiener. inthe present paper, by using a new method introduced by klavžar we compute the wiener andszeged indices of some nanostar dendrimers.
For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined as the sum of degree product over all non-adjacent vertex pairs in G. Till now, established results concerning Zagreb coindices are mainly related to composite graphs and extremal values of some special graphs. The existing liter...
zagreb indices belong to better known and better researched topological indices. weinvestigate here their ability to discriminate among benzenoid graphs and arrive at some quiteunexpected conclusions. along the way we establish tight (and sometimes sharp) lower andupper bounds on various classes of benzenoids.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید