نتایج جستجو برای: cototal domination number and connected cototal domination number
تعداد نتایج: 16885516 فیلتر نتایج به سال:
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let c(G) denote the size of any smallest connected dominating set in G. A graph G is k-connected-critical if c(G)= k, but if any edge e ∈ E(Ḡ) is added to G, then c(G+ e) k − 1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G ...
Zverovich [Discuss. Math. Graph Theory 23 (2003), 159–162.] has proved that the domination number and connected domination number are equal on all connected graphs without induced P5 and C5. Here we show (with an independent proof) that the following stronger result is also valid: Every P5-free and C5-free connected graph contains a minimum-size dominating set that induces a complete subgraph.
In [J. Graph Theory 13 (1989) 749–762], McCuaig and Shepherd gave an upper bound of the domination number for connected graphs with minimum degree at least two. In this paper, we propose a simple strategy which, together with the McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number via the number of leaves. We also apply the same strategy to other domination-like invaria...
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
The ratio of the connected domination number, γc, and the domination number, γ, is strictly bounded from above by 3. It was shown by Zverovich that for every connected (P5, C5)-free graph, γc = γ. In this paper, we investigate the interdependence of γ and γc in the class of (Pk, Ck)-free graphs, for k ≥ 6. We prove that for every connected (P6, C6)-free graph, γc ≤ γ+1 holds, and there is a fam...
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
For a simple graph G, the independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish upper bounds for the independent domination number of K1,k+1-free graphs, as functions of the order, size and k. Also we present a lower bound for the size of connected graphs with given order and value of independent domination ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید