نتایج جستجو برای: causal

تعداد نتایج: 63359  

Journal: :Int. J. Approx. Reasoning 2007
Eric Neufeld Sonje Kristtorn

The Markov condition describes the conditional independence relations present in a causal model that are consequent to its graphical structure, whereas the faithfulness assumption presumes that there are no other independencies in the model. Cartwright argues that causal inference methods have limited applicability because the Markov condition cannot always be applied to domains, and gives an e...

Journal: :CoRR 2017
Sara Magliacane Thijs van Ommen Tom Claassen Stephan Bongers Philip Versteeg Joris M. Mooij

An important goal in both transfer learning and causal inference is to make accurate predictions when the distribution of the test set and the training set(s) differ. Such a distribution shift may happen as a result of an external intervention on the data generating process, causing certain aspects of the distribution to change, and others to remain invariant. We consider a class of causal tran...

2011
George Karabatsos Stephen G. Walker

Typically, in the practice of causal inference from observational studies, a parametric model is assumed for the joint population density of potential outcomes and treatment assignments, and possibly this is accompanied by the assumption of no hidden bias. However, both assumptions are questionable for real data, the accuracy of causal inference is compromised when the data violates either assu...

2010
Bernhard Schölkopf

This paper reviews a theory of causal inference based on the Structural Causal Model (SCM) described in (Pearl, 2000a). The theory unifies the graphical, potential-outcome (NeymanRubin), decision analytical, and structural equation approaches to causation, and provides both a mathematical foundation and a friendly calculus for the analysis of causes and counterfactuals. In particular, the paper...

2018
Chelsea Barabas Madars Virza Karthik Dinakar Joichi Ito Jonathan Zittrain

Actuarial risk assessments might be unduly perceived as a neutral way to counteract implicit bias and increase the fairness of decisions made at almost every juncture of the criminal justice system, from pretrial release to sentencing, parole and probation. In recent times these assessments have come under increased scrutiny, as critics claim that the statistical techniques underlying them migh...

2009
Julie Colhoun

In recent papers, Lee & Holyoak (2007, 2008a, 2008b) argue that extant models of analogy fail to explain how people draw inferences from causal analogies. In the current research, we argue that structure-mapping theory sufficiently explains the analogical inferences drawn from these causal analogies, and that, contrary to L&H‘s claims, the effect inference can indeed be evaluated by a post-anal...

Journal: :Cognitive science 2010
Charles Kemp Noah D. Goodman Joshua B. Tenenbaum

Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a ...

1999
David Madigan

In clinical trials with significant noncompliance the standard intention-to-treat analyses sometimes mislead. Rubin’s causal model provides an alternative method of analysis that can shed extra light on clinical trial data. Formulating the Rubin Causal Model as a graphical model facilitates model communication and computation.

2004
Marc J Buehner Jon May

Three experiments investigated the impact of delay on human causal learning. We present a new paradigm based on the presentation of continuous event streams, and use it to test two hypotheses drawn from associative learning theories of causal inference. Unlike free-operant procedures traditionally used to study temporal aspects of causal learning (Shanks, Pearson, & Dickinson, 1989; Shanks & Di...

2005
Bernard Manderick Sam Maes Stijn Meganck

This paper treats the calculation of the effect of an intervention (also called causal effect) on a variable from a combination of observational data and some theoretical assumptions. Observational data implies that the modeler has no way to do experiments to assess the effect of one variable on some others, instead he possesses data collected by observing variables in the domain he is investig...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید