نتایج جستجو برای: رنگ امیزی گراف
تعداد نتایج: 20973 فیلتر نتایج به سال:
مسئله های زمان بندی و برنامه ریزی، سازگارسازی و هماهنگ نمودن مجموعه ای از یگان ها در یک الگوی مکان-زمان است. هدف در این گونه مسئله ها این است که به بهترین شیوه از منابع در دسترس بهره برداری گردد. یکی از موقعیت های درگیر با مسئله زمان بندی، سازمان های آموزشی هستند. زمان بندی درس های دانشگاهی، به عنوان گونه ای از مسئله های زمان بندی آموزشی مورد توجه می باشد، این مسئله تخصیص شمار معینی از منابع ما...
برای گراف g، تابع c:v(g)→ n را یک رنگ آمیزی مجاز گوییم هرگاه برای هر c(u)= c(v)داشته یاشیم uv ϵ e(g) مجموع رنگی متناظر با رنگ آمیزی c را برابر با ∑u ϵ v(g)c(u) تعریف می کنیم و مجموع رنگی g ، ∑(g) ، را کمترین مقدار ممکن برای مجموع رنگی، در میان همه ی رنگ آمیزی های مجاز g قرار می دهیم. همچنین کمترین تعداد رنگی که برای آن، می توان یک ...
یک یک k- رنگ آمیزی بی دور از گراف g یک k-رنگ آمیزی مجاز از g است به طوری که هر زیرگراف القایی g روی دو کلاس رنگی دلخواه از g یک جنگل است. عدد رنگی بی دور یک گراف g مینیمم kای است به طوری که g یک k-رنگ آمیزی بی دور داشته باشد. این پایان نامه، مروری بر پژوهش های انجام شده در رنگ آمیزی بی دور است. در ابتدا عدد رنگی بی دور گراف هایی از جمله گراف های حاصل ضربی شامل شبکه ها، حاصل ضرب درخت ها، اس...
تئوری گراف یکی از مهمترین مباحث ریاضیات است که به کمک آن می توان طیف گسترده ای از مسائل موجود در دنیای واقعی را مدلسازی و تحلیل نمود. در این میان، دسته ای از مسائل تئوری گراف دارای اهمیت ویژه ای هستند، از آن جمله می توان به مسائل دور همیلتونی ltrfootnote{hamiltonian cycle}، مدار اویلری ltrfootnote{euler tour}، کوتاه ترین مسیر ltrfootnote{shortest path}، رنگ آمیزی گراف ها...
در این پایان نامه، به بررسی بعضی از روش های حل مسأله رنگ آمیزی گراف می پردازیم. در فصل اول، ابتدا برخی تعاریف اولیه و مدل برنامه ریزی خطی عدد صحیح این مسأله را بررسی می کنیم و در ادامه، تاریخچه رنگ آمیزی گراف را به طور مختصر بیان می کنیم. در فصل دوم، الگوریتم حریصانه برای حل مسأله رنگ آمیزی گراف به همراه چند شیوه انتخاب رئوس در این روش، بیان می شود و در انتهای فصل، با بیان نتایج عددی، این شیوه ...
رنگ آمیزی یکی از زمینه های مهم در نظریه گراف است. رنگ آمیزی های متعددی برای گراف ها وجود دارد، به عنوان مثال می توان به رنگ آمیزی های رأسی، یالی و کلی اشاره نمود. در سال 2002، هاکمن و دیگران مفهوم [r,s,t]- رنگ آمیزی را معرفی کردند. گراف (g=(v,e با مجموعه رأس های g و مجموعه یال های e و اعداد صحیح نامنفی r,s,t را در نظر بگیرید. یک [r,s,t]- رنگ آمیزی با k رنگ یک نگاشت مانند c از (v(g)?e(g به مجموع...
برای رئوس u وv از گراف همبندg با مرتبه n، طول بلندترین u-v مسیر درg به وسیله d(u،v) نشان داده می شود. رنگ آمیزی هامیلتونی c از گرافg برچسب گذاری برای رئوس موسوم به رنگ است، به طوری که برای هر دو رأس متفاوت u وv از گرافg داشته باشیم: d(u،v)+|c(u)-c(v)|?n-1. مقدار hc(c) رنگ آمیزی هامیلتونی cاز گراف g، بیشترین رنگ اختصاص داده شده به یک رأس از g توسط c است، و عدد رنگی هامیلتونی g که آن را با hc(...
رنگ آمیزی گراف با کمترین تعداد رنگی، به طوری که هیچ دو گره ی مجاوری دارای رنگ یکسانی نباشد، یکی از مهمترین مسائلی است که تحقیقات زیادی بر روی آن انجام می شود. در پژوهش حاضر، از الگوریتم ژنتیک و پدیده ی آشوب برای حل این مسأله استفاده شده است. برای تولید جمعیت اولیه از روش ابتکاری،به منظور تولید فرزندان مناسب و نزدیک به جواب بهینه و از روش تصادفی برای حفظ تنوع جمعیت استفاده شده است. همچنین، برای ...
برای یک رنگ آمیزی یالی داده شده با رنگ های {1,2,...,k}، یک رنگ آمیزی راسی از گراف g با رنگ های {1,2,...,k} را سازگار با رنگ آمیزی یالی می گوییم هرگاه برای هر یال از g، رنگ های ظاهر شده روی دو سر آن و رنگ خود یال یکسان نباشند. به کوچکترین k ای که برای هر رنگ آمیزی یالی با kـ رنگ {1,2,...,k} یک رنگ آمیزی سازگار با این رنگ آمیزی یالی و با استفاده از رنگ های{1...
نقطه شروع مسأله رنگ آمیزی گراف به رنگ آمیزی نقشه برمی گردد، به این ترتیب که دو ناحیه که مجاور هم هستند دارای رنگ یکسان نباشد و در این مسأله حداقل رنگ مورد استفاده برای ما اهمیت دارد، دو نوع رنگ آمیزی داریم رنگ آمیزی رأسی و رنگ آمیزی یالی، ما در رنگ آمیزی رأس های گراف با استفاده از شبکه عصبی به بهینه سازی ( حداقل رنگ ) بر اساس راه اندازی چندگانه شبکه شبه هاپفیلد می پردازیم که در این طرح تنها مسأ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید