نتایج جستجو برای: independent set
تعداد نتایج: 1063713 فیلتر نتایج به سال:
We show that the independent set sequence of a bipartite graph need not be unimodal.
The direct product of graphs G = (V (G), E(G)) and H = (V (H), E(H)) is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H), where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B× D), where C and D are nonadjacent in G, and A∪...
given a non-abelian finite group $g$, let $pi(g)$ denote the set of prime divisors of the order of $g$ and denote by $z(g)$ the center of $g$. thetextit{ prime graph} of $g$ is the graph with vertex set $pi(g)$ where two distinct primes $p$ and $q$ are joined by an edge if and only if $g$ contains an element of order $pq$ and the textit{non-commuting graph} of $g$ is the graph with the vertex s...
At most how many (proper) q-colorings does a regular graph admit? Galvin and Tetali conjectured that among all n-vertex, d-regular graphs with 2d|n, none admits more q-colorings than the disjoint union of n/2d copies of the complete bipartite graph Kd,d. In this note we give asymptotic evidence for this conjecture, showing that the number of proper q-colorings admitted by an n-vertex, d-regular...
For a set D of positive integers, we define a vertex set S ⊆ V (G) to be D-independent if u, v ∈ S implies the distance d(u, v) 6∈ D. The D-independence number βD(G) is the maximum cardinality of a D-independent set. In particular, the independence number β(G) = β{1}(G). Along with general results we consider, in particular, the odd-independence number βODD(G) where ODD = {1, 3, 5, . . .}.
Let G = (V,E). A set S ⊆ V is independent if no two vertices from S are adjacent, and by Ind(G) we mean the set of all independent sets of G. The number d (X) = |X| − |N(X)| is the difference of X ⊆ V , and A ∈ Ind(G) is critical if d(A) = max{d (I) : I ∈ Ind(G)} [7]. Let us recall the following definitions: ker(G) = ∩{S : S is a critical independent set} [5], core (G) = ∩{S : S is a maximum in...
The independence ratio i(G) of a graph G is the ratio of its independence number and the number of vertices. The ultimate categorical independence ratio of a graph G is defined as limk→∞ i(G×k), where G×k denotes the kth categorical power of G. This parameter was introduced by Brown, Nowakowski and Rall, who asked about its value for complete multipartite graphs. In this paper we determine the ...
It is proven that if G is a 3-cyclable graph on n vertices, with minimum degree δ and with a maximum independent set of cardinality α, then G contains a cycle of length at least min{n, 3δ− 3, n+ δ − α}.
Let G be a graph of sufficiently large order n, and let a and b be integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑x∈e h(e) ≤ b holds for any x ∈ V (G), then G[Fh] is called a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) | h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (simply, fractional ID-[a, b]-facto...
In 1973, Deuber published his famous proof of Rado’s conjecture regarding partition regular sets. In his proof, he invented structures called (m, p, c)-sets and gave a partition theorem for them based on repeated applications of van der Waerden’s theorem on arithmetic progressions. In this paper, we give the complete proof of Deuber’s, however with the more recent parameter set proof of his par...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید