نتایج جستجو برای: augmented zagreb index
تعداد نتایج: 447834 فیلتر نتایج به سال:
In this paper we study the first Zagreb index in bucket recursive trees containing buckets with variable capacities. This model was introduced by Kazemi in 2012. We obtain the mean and variance of the first Zagreb index and introduce a martingale based on this quantity.
The hyper-Zagreb index of a connected graph G, denoted by HM(G), is defined as HM(G) = ∑ uv∈E(G) [dG(u) + dG(v)] where dG(z) is the degree of a vertex z in G. In this paper, we study the hyper-Zagreb index of four operations on graphs.
the chromatic number of a graph g, denoted by χ(g), is the minimum number of colors such that g can be colored with these colors in such a way that no two adjacent vertices have the same color. a clique in a graph is a set of mutually adjacent vertices. the maximum size of a clique in a graph g is called the clique number of g. the turán graph tn(k) is a complete k-partite graph whose partition...
the first ($pi_1$) and the second $(pi_2$) multiplicative zagreb indices of a connected graph $g$, with vertex set $v(g)$ and edge set $e(g)$, are defined as $pi_1(g) = prod_{u in v(g)} {d_u}^2$ and $pi_2(g) = prod_{uv in e(g)} {d_u}d_{v}$, respectively, where ${d_u}$ denotes the degree of the vertex $u$. in this paper we present a simple approach to order these indices for connected graphs on ...
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper we present the lower bound on M1 and M2 among all unicyclic graphs of given order, maximum degree, and cycle length, and characterize graphs for which th...
The second Zagreb index of a graph G is an adjacency-based topological index, which is defined as ∑uv∈E(G)(d(u)d(v)), where uv is an edge of G, d(u) is the degree of vertex u in G. In this paper, we consider the second Zagreb index for bipartite graphs. Firstly, we present a new definition of ordered bipartite graphs, and then give a necessary condition for a bipartite graph to attain the maxim...
The reformulated Zagreb indices of a graph are obtained from the classical Zagreb indices by replacing vertex degrees with edge degrees, where the degree of an edge is taken as the sum of degrees of the end vertices of the edge minus 2. In this paper, we study the behavior of the reformulated first Zagreb index and apply our results to different chemically interesting molecular graphs and nano-...
Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید