نتایج جستجو برای: malonyl dichloride
تعداد نتایج: 3527 فیلتر نتایج به سال:
Continuous assays of carnitine palmitoyltransferase were used to study the hysteretic behaviour of the enzyme. When reactions were started by adding mitochondria to complete reaction mixtures, there was a lag in the assay even in the absence of malonyl-CoA. When mitochondria were preincubated with malonyl-CoA in the absence of palmitoyl-CoA, there was a greater lag period in the assay of carnit...
Questions concerning whether malonyl-CoA is regulated in human muscle and whether malonyl-CoA modulates fatty acid oxidation are still unanswered. To address these questions, whole-body fatty acid oxidation and the concentration of malonyl-CoA, citrate, and malate were determined in the vastus lateralis muscle of 16 healthy nonobese Swedish men during a sequential euglycemic-hyperinsulinemic cl...
The rate of cardiac fatty acid oxidation is regulated by the activity of carnitine palmitoyltransferase-I (CPT-I), which is inhibited by malonyl-CoA. We tested the hypothesis that the activity of the enzyme responsible for malonyl-CoA degradation, malonyl-CoA decarboxlyase (MCD), regulates myocardial malonyl-CoA content and the rate of fatty acid oxidation during demand-induced ischemia in vivo...
(1) Malonyl-CoA is thought to play a signalling role in fuel-selection in cardiac muscle, but the rate at which the concentration of this potential signal can be changed has not previously been investigated. (2) Rapid changes in cellular malonyl-CoA could be observed when rat cardiac myocytes were incubated in glucose-free medium followed by re-addition of 5 mM glucose, or when cells were trans...
The heart relies predominantly on a balance between fatty acids and glucose to generate its energy supply. There is an important interaction between the metabolic pathways of these two substrates in the heart. When circulating levels of fatty acids are high, fatty acid oxidation can dominate over glucose oxidation as a source of energy through feedback inhibition of the glucose oxidation pathwa...
The characteristics of inhibition of carnitine palmitoyltransferase (CPT) I by malonyl-CoA were studied for the enzyme in mitochondria isolated from sheep liver, a tissue with a very low rate of fatty acid synthesis. Malonyl-CoA was as potent in inhibiting the sheep liver enzyme as in inhibiting the enzyme in rat liver mitochondria. CPT I in guinea-pig liver mitochondria was also similarly inhi...
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA ...
Kinetic studies of the pigeon liver fatty acid synthetase have revealed that the enzyme is sensitive to inhibition by malonyl coenzyme A, one of the substrates of fatty acid synthesis. The inhibition is of the mixed type with respect to acetyl-CoA, and is competitive with respect to TPNH. Malonyl-CoA most markedly affects the K, for TPNH, increasing it 19-fold over a malonyl-CoA concentration r...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید