نتایج جستجو برای: forecasting evaluation
تعداد نتایج: 864045 فیلتر نتایج به سال:
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we de...
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeco...
Sales forecasting is one of the most crucial issues addressed in business. Control and evaluation of future sales still seem concerned both researchers and policy makers and managers of companies. this research propose an intelligent hybrid sales forecasting system Delphi-FCBPN sales forecast based on Delphi Method, fuzzy clustering and Back-propagation (BP) Neural Networks with adaptive learni...
Probabilistic forecasting, i.e. estimating the probability distribution of a time series’ future given its past, is a key enabler for optimizing business processes. In retail businesses, for example, forecasting demand is crucial for having the right inventory available at the right time at the right place. In this paper we propose DeepAR, a methodology for producing accurate probabilistic fore...
OBJECTIVES There is a growing body of literature on malaria forecasting methods and the objective of our review is to identify and assess methods, including predictors, used to forecast malaria. DESIGN Scoping review. Two independent reviewers searched information sources, assessed studies for inclusion and extracted data from each study. INFORMATION SOURCES Search strategies were developed...
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often omitted by practitioners in favor of an out-of-sample (OOS) evaluation. In ...
The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed 5 Forward Neural Networks (FFNN), for forecasting of daily river f...
While artificial neural networks (NN) promise superior performance in forecasting theory, they are not an established method in business practice. The vast degrees of freedom in modeling NNs have lead to countless publications on heuristic approaches to simplify modeling, training, network selection and evaluation. However, not all studies have conducted experiments with the same scientific rig...
In this paper we focus on forecasting for intermittent demand data. We propose a new aggregation framework for intermittent demand forecasting that performs aggregation over the demand volumes, in contrast to the standard framework that employs temporal (over time) aggregation. To achieve this we construct a transformed time series, the inverse intermittent demand series. The new algorithm is e...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید