نتایج جستجو برای: prime graph conjecture
تعداد نتایج: 268148 فیلتر نتایج به سال:
let $m$ be a module over a commutative ring $r$ and let $n$ be a proper submodule of $m$. the total graph of $m$ over $r$ with respect to $n$, denoted by $t(gamma_{n}(m))$, have been introduced and studied in [2]. in this paper, a generalization of the total graph $t(gamma_{n}(m))$, denoted by $t(gamma_{n,i}(m))$ is presented, where $i$ is an ideal of $r$. it is the graph with all elements of $...
the prime graph $gamma(g)$ of a group $g$ is a graph with vertex set $pi(g)$, the set of primes dividing the order of $g$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $g$ of order $pq$. let $pi(g)={p_{1},p_{2},...,p_{k}}$. for $pinpi(g)$, set $deg(p):=|{q inpi(g)| psim q}|$, which is called the degree of $p$. we also set $d(g):...
let $g$ be a finite group. in [ghasemabadi et al., characterizations of the simple group ${}^2d_n(3)$ by prime graph and spectrum, monatsh math., 2011] it is proved that if $n$ is odd, then ${}^2d _n(3)$ is recognizable by prime graph and also by element orders. in this paper we prove that if $n$ is even, then $d={}^2d_{n}(3)$ is quasirecognizable by prime graph, i.e...
Let G be a finite non-abelian group. The noncommuting graph of G is denoted by ∇(G) and is defined as follows: the vertex set of ∇(G) is G \ Z(G) and two vertices x and y are adjacent if and only if xy 6= yx. Let p be a prime number. In this paper, it is proved that the almost simple group PGL(2, p) is uniquely determined by its noncommuting graph. As a consequence of our results the validity o...
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
an oriented perfect path double cover (oppdc) of a graph $g$ is a collection of directed paths in the symmetric orientation $g_s$ of $g$ such that each arc of $g_s$ lies in exactly one of the paths and each vertex of $g$ appears just once as a beginning and just once as an end of a path. maxov{'a} and ne{v{s}}et{v{r}}il (discrete math. 276 (2004) 287-294) conjectured that ...
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
Let $p=(q^4+q^3+q^2+q+1)/(5,q-1)$ be a prime number, where $q$ is a prime power. In this paper, we will show $Gcong mathrm{PSL}(5,q)$ if and only if $|G|=|mathrm{PSL}(5,q)|$, and $G$ has a conjugacy class size $frac{| mathrm{PSL}(5,q)|}{p}$. Further, the validity of a conjecture of J. G. Thompson is generalized to the groups under consideration by a new way.
We prove that $D_n(3)$, where $ngeq6$ is even, is uniquely determined by its prime graph. Also, if $G$ is a finite group with the same prime graph as $D_4(3)$, then $Gcong D_4(3), B_3(3), C_3(3)$ or $G/O_2(G)cong {rm Aut}({}^2B_2(8))$.
a finite group $g$ satisfies the on-prime power hypothesis for conjugacy class sizes if any two conjugacy class sizes $m$ and $n$ are either equal or have a common divisor a prime power. taeri conjectured that an insoluble group satisfying this condition is isomorphic to $s times a$ where $a$ is abelian and $s cong psl_2(q)$ for $q in {4,8}$. we confirm this conjecture.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید