نتایج جستجو برای: garch approach
تعداد نتایج: 1293338 فیلتر نتایج به سال:
To capture the missed information in the standardized errors by parametric multivariate generalized autoregressive conditional heteroskedasticity (MV-GARCH) model, we propose a new semiparametric MV-GARCH (SM-GARCH) model. This SM-GARCH model is a twostep model: firstly estimating parametric MV-GARCH model, then using nonparametric skills to model the conditional covariance matrix of the standa...
This survey reviews the existing literature on the most relevant Bayesian inference methods for univariate and multivariate GARCH models. The advantages and drawbacks of each procedure are outlined as well as the advantages of the Bayesian approach versus classical procedures. The paper makes emphasis on recent Bayesian non-parametric approaches for GARCH models that avoid imposing arbitrary pa...
This paper considers simultaneous modelling of seasonality, slowly changing unconditional variance and conditional heteroskedasticity in high-frequency nancial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimating ...
This paper proposes an efficient approach for computing the prices of American style options in the GARCH framework. Rubinstein’s (1998) Edgeworth tree idea is combined with the analytical formulas for moments of the cumulative return under GARCH developed in Duan et al. (1999, 2002) to yield a simple recombining binomial tree for option valuation in the GARCH context. Since the resulting tree ...
Correlations among the asset returns are the main reason for the computational and statistical complexities of the full multivariate GARCH models. We rely on the variancecorrelation separation strategy and introduce a broad class of multivariate models in the spirit of Engle’s (2002) dynamic conditional correlation models, that is univariate GARCH models are used for variances of individual ass...
Correlations among the asset returns are the main reason for the computational and statistical complexities of the full multivariate GARCH models. We rely on the variancecorrelation separation strategy and introduce a broad class of multivariate models in the spirit of Engle’s (2002) dynamic conditional correlation models, that is univariate GARCH models are used for variances of individual ass...
The augmented GARCH model is a unification of numerous extensions of the popular and widely used ARCH process. It was introduced by Duan and besides ordinary (linear) GARCH processes, it contains exponential GARCH, power GARCH, threshold GARCH, asymmetric GARCH, etc. In this paper, we study the probabilistic structure of augmented GARCH(1,1) sequences and the asymptotic distribution of various ...
This brief note offers an explicit algorithm for a multivariate GARCH model, called PC-GARCH, that requires only univariate GARCH estimation. It is suitable for problems with hundreds or even thousands of variables. PC-GARCH is compared to two other techniques of getting multivariate GARCH using univariate estimates.
Option pricing based on GARCH models is typically obtained under the assumption that the random innovations are standard normal (normal GARCH models). However, these models fail to capture the skewness and the leptokurtosis in financial data. We propose a new method to compute option prices using a non-parametric density estimator for the distribution of the driving noise. We investigate the pr...
Most studies on the asymmetric and non-linear properties of US business cycles exclude the dimension of asymmetric conditional volatility. Engle (1982) proposes an autoregressive conditional heteroskedasticity (ARCH) model to capture the time-varying volatility of inflation rates in the United Kingdom. Weiss (1984) finds evidence of ARCH in the US industrial production. The ARCH model is then e...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید