نتایج جستجو برای: paced learning
تعداد نتایج: 605450 فیلتر نتایج به سال:
Latent variable models are a powerful tool for addressing several tasks in machine learning. However, the algorithms for learning the parameters of latent variable models are prone to getting stuck in a bad local optimum. To alleviate this problem, we build on the intuition that, rather than considering all samples simultaneously, the algorithm should be presented with the training data in a me...
In this project, I plan to apply self-paced learning to the bounding-box problem using the VOC2011 dataset.
Matrix factorization (MF) has been attracting much attention due to its wide applications. However, since MF models are generally non-convex, most of the existing methods are easily stuck into bad local minima, especially in the presence of outliers and missing data. To alleviate this deficiency, in this study we present a new MF learning methodology by gradually including matrix elements into ...
This paper introduces self-paced task selection to multitask learning, where instances from more closely related tasks are selected in a progression of easier-to-harder tasks, to emulate an effective human education strategy, but applied to multitask machine learning. We develop the mathematical foundation for the approach based on iterative selection of the most appropriate task, learning the ...
Self-paced learning (SPL) mimics the cognitive mechanism of humans and animals that gradually learns from easy to hard samples. One key issue in SPL is to obtain better weighting strategy that is determined by the minimizer functions. Existing methods usually pursue this by artificially designing the explicit form of regularizers. In this paper, we focus on the minimizer functions, and study a ...
This is the supplementary material for the paper entitled “Self-Paced Learning with Diversity”. The material is organized as follows: Section 1 gives the proof of Theorem 1. Section 2.1 and Section 2.2 present the detailed experimental settings and results on the MED (Multimedia Event Detection) dataset. Section 2.3 and Section 2.4 present the settings and detailed results on the Hollywood2 and...
Sparse coding (SC) is attracting more and more attention due to its comprehensive theoretical studies and its excellent performance in many signal processing applications. However, most existing sparse coding algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and noisy data. To enhance the learning robustness, in this paper, w...
Although memory exercises and arcade-style games are alike in their repetitive nature, memorization tasks like vocabulary drills tend to be mundane and tedious while arcade-style games are popular, intense and broadly addictive. The repetitive structure of arcade games suggests an opportunity to modify these well-known games for the purpose of learning. Arcade-style games like Tetris and Pac-ma...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید