نتایج جستجو برای: autoregressive model
تعداد نتایج: 2108192 فیلتر نتایج به سال:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from inpu...
Biofuel is known as one of the best gasoline substitutes in the transportation industry. Designing an optimal supply chain is an essential requirement for the commercialization of biofuel production. This paper presents a mixed integer linear programming model to design a biofuel supply chain in which biofuel demand is under autoregressive moving average time series models. It is studied how th...
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final...
We describe a new model for learning meaningful representations of text documents from an unlabeled collection of documents. This model is inspired by the recently proposed Replicated Softmax, an undirected graphical model of word counts that was shown to learn a better generative model and more meaningful document representations. Specifically, we take inspiration from the conditional mean-fie...
Methods: Using daily exchange rates for 7 years (January 1, 2008, to April 30, 2015), this study attempted to model dynamics following generalized autoregressive conditional heteroscedastic (GARCH), asymmetric power ARCH (APARCH), exponential generalized autoregressive conditional heteroscedstic (EGARCH), threshold generalized autoregressive conditional heteroscedstic (TGARCH), and integrated g...
abstract: in the paper of black and scholes (1973) a closed form solution for the price of a european option is derived . as extension to the black and scholes model with constant volatility, option pricing model with time varying volatility have been suggested within the frame work of generalized autoregressive conditional heteroskedasticity (garch) . these processes can explain a number of em...
The assumption of Gaussian innovation terms in linear time series analysis is quite restrictive. Under this assumption, both the marginal and conditional distributions of the time series are Gaussian. However, in real life many time series display features which seem to violate the Gaussian assumption. For example, Chan and Tong (1998) show that the Canadian lynx data have a bimodal marginal di...
Although a myriad of methods have been advanced to tackle spatial and temporal structures in data separately, it becomes difficult to analyze these data using classical linear regression models when spatial-temporal structures coexist, especially when the data size is relatively large. In this article, we demonstrate a simple to implement method to handle spatial-temporal structures simultaneou...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید