نتایج جستجو برای: total domatic number
تعداد نتایج: 1830962 فیلتر نتایج به سال:
Let G be a graph with vertex set V (G), and let f : V (G) −→ {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), is call...
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
The domatic number of a graph G is the maximum number of dominating sets into which the vertex set of G can be partitioned. We show that the domatic number of a random r-regular graph is almost surely at most r, and that for 3-regular random graphs, the domatic number is almost surely equal to 3. We also give a lower bound on the domatic number of a graph in terms of order, minimum degree and m...
Let G = (V,E) be a simple undirected graph, and k be a positive integer. A k-dominating set of G is a set of vertices S ⊆ V satisfying that every vertex in V \ S is adjacent to at least k vertices in S. A k-domatic partition of G is a partition of V into k-dominating sets. The k-domatic number of G is the maximum number of k-dominating sets contained in a k-domatic partition of G. In this paper...
A dominating set S in a graph G is a tree dominating set of G if the subgraph induced by S is a tree. The tree domatic number of G is the maximum number of pairwise disjoint tree dominating sets in V (G). First, some exact values of and sharp bounds for the tree domatic number are given. Then, we establish a sharp lower bound for the number of edges in a connected graph of given order and given...
A signed Roman dominating function (SRDF) on a graph G is a function f : V (G) → {−1, 1, 2} such that u∈N [v] f(u) ≥ 1 for every v ∈ V (G), and every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on G with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (G), is called a sig...
For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید