نتایج جستجو برای: pde3a

تعداد نتایج: 120  

Journal: :Molecular pharmacology 2002
W Zhang H Ke R W Colman

To identify amino acid residues involved in PDE3-selective inhibitor binding, we selected eight presumed interacting residues in the substrate-binding pocket of PDE3A using a model created on basis of homology to the PDE4B crystal structure. We changed the residues to alanine using site-directed mutagenesis technique, expressed the mutants in a baculovirus/Sf9 cell system, and analyzed the kine...

Journal: :The Journal of biological chemistry 2015
Faiyaz Ahmad Weixing Shen Fabrice Vandeput Nicolas Szabo-Fresnais Judith Krall Eva Degerman Frank Goetz Enno Klussmann Matthew Movsesian Vincent Manganiello

Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a m...

Journal: :Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2012
F Ahmad E Degerman V C Manganiello

The superfamily of cyclic nucleotide phosphodiesterases is comprised of 11 gene families. By hydrolyzing cAMP and cGMP, PDEs are major determinants in the regulation of intracellular concentrations of cyclic nucleotides and cyclic nucleotide-dependent signaling pathways. Two PDE3 subfamilies, PDE3A and PDE3B, have been described. PDE3A and PDE3B hydrolyze cAMP and cGMP with high affinity in a m...

Journal: :MedChemComm 2013
Junfeng Li Hongjun Jin Haiying Zhou Justin Rothfuss Zhude Tu

Twenty eight new analogues were synthesized by optimizing the structure of MP-10 and their in vitro binding affinities towards PDE10A, PDE3A/B, and PDE4A/B were determined. Among these new analogues, 10a, 10b, 10d, 11a, 11b and 11d are very potent towards PDE10A and have IC50 values of 0.40 ± 0.02, 0.28 ± 0.06, 1.82 ± 0.25, 0.24 ± 0.05, 0.36 ± 0.03 and 1.78 ± 0.03 nM respectively; these six com...

2007
Joseph A. Beavo

Endothelial barrier dysfunction leading to increased permeability and vascular leakage is an underlying cause of several pathological conditions, including edema and sepsis. Whereas cAMP has been shown to decrease endothelial permeability, the role of cGMP is controversial. Endothelial cells express cGMP-inhibited phosphodiesterase (PDE)3A and cGMP-stimulated PDE2A. Thus we hypothesized that th...

Journal: :Blood 1996
P P Cheung H Xu M M McLaughlin F A Ghazaleh G P Livi R W Colman

Cyclic adenosine monophosphate (cAMP) is an important modulator of platelet responses to agonists. Cyclic nucleotide phosphodiesterase (PDE) controls intracellular cAMP concentrations by hydrolyzing it to AMP. The major PDE activity in platelets is PDE3A (cyclic guanosine monophosphate [cGMP]-inhibited PDE). To obtain structural information on platelet PDE3A, we cloned the enzyme cDNA from a hu...

Journal: :Circulation research 2007
James Surapisitchat Kye-Im Jeon Chen Yan Joseph A Beavo

Endothelial barrier dysfunction leading to increased permeability and vascular leakage is an underlying cause of several pathological conditions, including edema and sepsis. Whereas cAMP has been shown to decrease endothelial permeability, the role of cGMP is controversial. Endothelial cells express cGMP-inhibited phosphodiesterase (PDE)3A and cGMP-stimulated PDE2A. Thus we hypothesized that th...

2017
Xiaofei Zhu Kui Zhai Yue Mi Guangju Ji

BACKGROUND It has been shown that hosphodiesterases (PDEs) play an important role in mediating the smooth muscle tone of rat urinary bladder. However, the gene expression profiles of them were still unknown. METHODS Urinary bladder Strips were obtained from both neonatal and adult Sprague-Dawley rats. RT-PCR/western blot and organ bath were used to measure the expression and function of PDEs....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید