نتایج جستجو برای: candida azole resistance
تعداد نتایج: 403294 فیلتر نتایج به سال:
Changes in protein expression within a matched set of Candida albicans isolates representing the acquisition of azole resistance were examined by two-dimensional polyacrylamide gel electrophoresis and peptide mass fingerprinting. Proteins differentially expressed in association with azole resistance included Grp2p, Ifd1p, Ifd4p, Ifd5p, and Erg10p, a protein involved in the ergosterol biosynthes...
Candida dubliniensis is a recently described species of pathogenic yeast that shares many phenotypic features with Candida albicans. It is primarily associated with oral colonization and infection in HIV-infected individuals. Isolates of C. dubliniensis are generally susceptible to commonly used azole antifungal agents; however, resistance has been observed in clinical isolates and can be induc...
One of the mechanisms of Candida albicans resistance to azole drugs used in antifungal therapy relies on increased expression and presence of point mutations in the ERG11 gene that encodes sterol 14α demethylase (14DM), an enzyme which is the primary target for the azole class of antifungals. The aim of the study was to analyze nucleotide substitutions in the Candida albicans ERG11 gene of azol...
A yeast-like organism was isolated from a urine sample of a 6-year-old neutered male miniature poodle dog with urinary tract infection, diabetes ketoacidosis, and acute pancreatitis. We identified the yeast-like organism to be Candida glabrata and found that this fungus was highly resistant to azole antifungal drugs. To understand the mechanism of azole resistance in this isolate, the sequences...
This is the first Romanian investigation of oral candidosis in patients suffering of HIV-infection or type 1 diabetes mellitus (T1DM). Candida albicans was the dominant species in both types of isolates: n = 14 (46.7%) in T1DM, n = 60 (69.8%) in HIV. The most frequent non-albicans Candida spp. were Candida kefyr (n = 6; 20%) in T1DM and Candida dubliniensis (n = 8; 9.3%) in HIV. Resistance to f...
For years, antifungal drug resistance in Candida species has been associated to the expression of ATP-Binding Cassette (ABC) multidrug transporters. More recently, a few drug efflux pumps from the Drug:H(+) Antiporter (DHA) family have also been shown to play a role in this process, although to date only the Candida albicans Mdr1 transporter has been demonstrated to be relevant in the clinical ac...
BACKGROUND Fluorescent dye Rhodamine 6G (R6G) is a substrate of multidrug resistance pumps and its accumulation is reduced in some azole-resistant Candida isolates with the upregulation of multidrug efflux transporter genes. Despite reports on species-specific differences in azole susceptibility in various Candida species, only a few studies have been reported on the R6G accumulation among clin...
We collected 1,486 clinical isolates of Candida species over a five-year period (2001 to 2005) in Japan and examined their species distribution and patterns of susceptibility to three antifungal azoles (fluconazole, itraconazole, and voriconazole). The most frequently isolated species was C. albicans, being followed by C. glabrata, C. tropicalis, C. parapsilosis and C. krusei, in this order, at...
One of the main azole-resistance mechanisms in Candida pathogens is the upregulation of drug efflux pumps, which compromises the efficacy of azoles and results in treatment failure. The combination of azole-antifungal agents with efflux pump inhibitors represents a promising strategy to combat fungal infection. High-throughput screening of 150 extracts obtained from endolichenic fungal cultures...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید