نتایج جستجو برای: heavy ions
تعداد نتایج: 251645 فیلتر نتایج به سال:
the adsorption ability of miswak (salvadora persica l.) waste was investigated for the removalof common heavy metals; pb(ii), cu(ii), ni(ii) and cd(ii), from aqueous systems. the miswak mainlyconsists of saponins, tannins, silica and resin, which are accounted for the removal of heavy metal ions fromaqueous systems. the effects of various parameters, such as solution ph, contact time, initial c...
The great potential of nanoporous membranes for water filtration and chemical separation has been challenged by the trade-off between selectivity and permeability. Here we report on nanoporous polymer membranes with an excellent balance between selectivity and permeability of ions. Our membranes are fabricated by irradiating 2-μm-thick polyethylene terephthalate Lumirror® films with GeV heavy i...
Carbon nanotubes (CNTs) are a novel material that exhibits good adsorption behavior toward various toxic pollutants in aqueous solution. These adsorbents have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of CNTs for the treatment of water polluted with heavy metal io...
Different contaminants are released to wastewater with the rapid industrialization of human society, including heavy metal ions, organics, bacteria, viruses, and so on, which are serious harmful to human health. Among all water contaminations, heavy metal ions, such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, have high toxic and nonbiodegradable properties, can cause severe health problems in animals a...
Backgrounds & objectives: Contamination of the environment by heavy metals, pollute water and agricultural products. The aggregation of these metals will cause various diseases for human. Therefore, it is important to study how to make them safe. The purpose of this study is to evaluate the efficiency of starch-iron oxide nanocomposite in removing two heavy metals, nickel and cadmium, from wast...
The main accelerator system of the proposed research facility FAIR is the two stage synchrotron complex SIS100/300, consisting of two separate synchrotron accelerators with equal circumferences. SIS100/300 shall provide beams of protons and heavy ions with high intensities and high energies. The existing GSI accelerators UNILAC and SIS18 shall serve as injector for SIS100/300. SIS100 will be de...
Effects of prenatal low-dose irradiations of heavy ions on the postnatal development of mice and of melanocytes have not been well studied. Pregnant females of C57BL/10J mice were irradiated whole-body at 9 days of gestation with a single acute dose of γ-rays, silicon (Si, 57 keV/µm), argon (Ar, 100 keV/µm) and iron (Fe, 220 keV/µm) ions. The effects were studied by scoring changes in the postn...
The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...
Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell p...
Sorption techniques are widely used to remove heavy metal ions from large volumes of aqueous solutions. Herein, the natural and some artificial materials, such as clay minerals, biosorbents, carbon-nanomaterials, metal oxides, are reviewed as adsorbents in the removal of different heavy metal ions, such as Ni(II), Cu(II), Pb(II), Cd(II), Cs(I), Eu(III), Th(IV), Cr(VI) from large volumes of aque...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید