نتایج جستجو برای: nanopositioning
تعداد نتایج: 224 فیلتر نتایج به سال:
This paper presents open loop characteristics of the flexure stage based single input single output (SISO) nanopositioning device. The dynamic characteristics of the device have been analyzed. System characteristics can be improved by using different types of feedback controllers. To provide consistent, reliable and safe solution to the industrial control problems, different tuning schemes such...
In this paper, the design of a new compliant XYZ totally decoupled parallel-kinematic nanopositioning stage based on flexure mechanism is presented, which is driven by PZT actuators. The output of the flexure stage is enlarged by a compound amplifier of three order based on bridge principle with the amplification ratio of As which is larger than the ratio of As for one simple amplifier. The thr...
In nanotechnology applications, nanopositioning, i.e., nanometer-scale precision control at dimensions of less than 100 nm, plays a central role. One can view nanopositioners as precision mechatronics systems aiming at moving objects over a certain distance with a resolution that could be as low as a fraction of an Ångström. Actuation, position sensing and feedback control are the key component...
Control Strategies and Motion Planning for Nanopositioning Applications with Multi-Axis Magnetic-Levitation Instruments. (May 2007) Huzefa Shakir, B. Tech. (Honors), Indian Institute of Technology, Kharagpur Chair of Advisory Committee: Dr. Won-jong Kim This dissertation is the first attempt to demonstrate the use of magnetic-levitation (maglev) positioners for commercial applications requiring...
An important component of an atomic force microscope is a nanopositioner that moves the sample, relative to the probe, in a raster pattern. A typical AFM nanopositioner is a large, heavy flexure-guided mechanism machined from a solid block of steel or aluminum, with incorporated actuators and displacement sensors. The most widely used actuation technology for nanopositioning is the piezoelectri...
In this contribution, we report on different miniaturized bulk micro machined three-axes piezoresistive force sensors for nanopositioning and nanomeasuring machine (NPMM). Various boss membrane structures, such as one boss full/cross, five boss full/cross and swastika membranes, were used as a basic structure for the force sensors. All designs have 16 p-type diffused piezoresistors on the surfa...
Nanometer-precise positioning at ultra-high velocities is a major challenge for rapidly emerging applications that use scanning probes in order to observe and alter the properties of materials down to the nanoscale. Typical examples include surface imaging, nanolithography and data storage. For example in probe-based data storage, constant linear velocity along the scan trajectory is required, ...
In atomic force microscopy (AFM), the dynamics and nonlinearities of its nanopositioning stage are major sources of image distortion, especially when imaging at high scanning speed. This chapter discusses the design and experimental implementation of an observer-based model predictive control (OMPC) scheme which aims to compensate for the effects of creep, hysteresis, cross-coupling, and vibrat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید