نتایج جستجو برای: minus domination

تعداد نتایج: 17513  

Journal: :Discrete Optimization 2016

2012
Zhenlin Li Xinzhong Lu Z. Li X. Lu

Let Γ−t (G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a 6-regular graph G and characterize the extremal graphs attaining the bound. Thus, we partially answer an open problem by Yan, Yang and Shan. AMS Subject Classification: 05C69

Journal: :Discrete Applied Mathematics 2008
Erfang Shan T. C. Edwin Cheng Liying Kang

A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...

2007
Erfang Shan T.C.E. Cheng Liying Kang

3 A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed domi4 nating function if for any vertex v the sum of function values over its closed neighborhood 5 is at least one. The signed domination number γs(G) of G is the minimum weight of a 6 signed dominating function on G. By simply changing “{+1,−1}” in the above definition 7 to “{+1, 0,−1}”, we can define the minus ...

Journal: :Discrete Mathematics 2007
Hong Yan Xiaoqi Yang Erfang Shan

A function f :V (G) → {−1, 0, 1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V (G) → {−1, 0, 1}, f = g, for which g(v) f (v) for every v ∈ V (G). The weight of an MTDF is the sum of its function values over all vertices. The mi...

Journal: :Discrete Mathematics 2009
Ermelinda DeLaViña Ryan Pepper Bill Waller

We show that the total domination number of a simple connected graph is greater than the average distance of the graph minus one-half, and that this inequality is best possible. In addition, we show that the domination number of the graph is greater than two-thirds of the average distance minus one-third, and that this inequality is best possible. Although the latter inequality is a corollary t...

Journal: :Discrete Mathematics 1996
Jean E. Dunbar Stephen T. Hedetniemi Michael A. Henning Alice A. McRae

A three-valued function f defined on the vertices of a graph G = (V,E), f : V , ( 1 , 0 , 1), is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v])>~ 1, where N[v] consists of v and every vertex adjacent to v. The weight of a minus dominating function is f ( V ) = ~ f (v) , over all vertices v E V. The mi...

Journal: :Discrete Applied Mathematics 2001

Journal: :Ars Comb. 2016
Hongyu Liang

In this paper we determine the exact values of the signed domination number, signed total domination number, and minus domination number of complete multipartite graphs, which substantially generalizes some previous results obtained for special subclasses of complete multipartite graphs such as cliques and complete bipartite graphs.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید