نتایج جستجو برای: minus domination

تعداد نتایج: 17513  

Journal: :transactions on combinatorics 2014
maryam atapour sepideh norouzian seyed mahmoud sheikholeslami

a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...

Journal: :communication in combinatorics and optimization 0
maryam atapour department of mathematics faculty of basic sciences university of bonab bonab, iran, po. box: 5551761167 abdollah khodkar department of mathematics university of west georgia carrollton, ga 30118, usa

let $d=(v,a)$ be a finite simple directed graph. a function$f:vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (tmdf) if $f(n^-[v])ge 1$ and $f(n^+[v])ge 1$ for eachvertex $vin v$. the twin minus domination number of $d$ is$gamma_{-}^*(d)=min{w(f)mid f mbox{ is a tmdf of } d}$. inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...

2013
Luérbio Faria Wing-Kai Hon Ton Kloks Hsiang Hsuan Liu Tao-Ming Wang Yue-Li Wang

A function f : V → {−1, 0, 1} is a minus-domination function of a graph G = (V,E) if the values over the vertices in each closed neighborhood sum to a positive number. The weight of f is the sum of f(x) over all vertices x ∈ V. The minus-domination number γ(G) is the minimum weight over all minus-domination functions. The size of a minus domination is the number of vertices that are assigned 1....

2014
S. M. SHEIKHOLESLAMI Manouchehr Zaker S. M. Sheikholeslami

A function f : V (G) → {−1, 0, 1} is a minus dominating function if for every vertex v ∈ V (G), ∑ u∈N [v] f(u) ≥ 1. A minus dominating function f of G is called a global minus dominating function if f is also a minus dominating function of the complement G of G. The global minus domination number γ− g (G) of G is defined as γ − g (G) = min{ ∑ v∈V (G) f(v) | f is a global minus dominating functi...

For any integer  ‎, ‎a minus  k-dominating function is a‎function  f‎ : ‎V (G)  {-1,0‎, ‎1} satisfying w) for every  vertex v, ‎where N(v) ={u V(G) | uv  E(G)}  and N[v] =N(v)cup {v}. ‎The minimum of ‎the values of  v)‎, ‎taken over all minus‎k-dominating functions f,‎ is called the minus k-domination‎number and is denoted by $gamma_k^-(G)$ ‎. ‎In this paper‎, ‎we ‎introduce the study of minu...

Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...

Journal: :communication in combinatorics and optimization 0
n. dehgardi sirjan university of technology, sirjan 78137, iran

‎for any integer $kge 1$‎, ‎a minus $k$-dominating function is a‎ ‎function $f‎ : ‎v (g)rightarrow {-1,0‎, ‎1}$ satisfying $sum_{win‎‎n[v]} f(w)ge k$ for every $vin v(g)$‎, ‎where $n(v) ={u in‎‎v(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$‎. ‎the minimum of‎‎the values of $sum_{vin v(g)}f(v)$‎, ‎taken over all minus‎‎$k$-dominating functions $f$‎, ‎is called the minus $k$-domination‎‎number and i...

Journal: :Discrete Mathematics 1999

Journal: :Discrete Mathematics 1999
Jean E. Dunbar Stephen T. Hedetniemi Michael A. Henning Alice A. McRae

We introduce one of many classes of problems which can be defined in terms of 3-valued functions on the vertices of a graph G = (V, E) of the form f : V + { 1, 0, l}. Such a fknction is said to be a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every t’ E V, ,f(N[r~])> 1, where N[a] consists of 1: and every vertex adjacent...

Journal: :Discrete Mathematics 1996

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید