نتایج جستجو برای: complement of the annihilating ideal graph of a commutative ring
تعداد نتایج: 24602922 فیلتر نتایج به سال:
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...
the effect of the presence of perforations on he stresses of a plate is a problem which is of great interest in structural design and in the mathemattical theory of elasticity. among the many hole patterns that are likely to require consideration is the ring of equally spaced circular holes. the present worke investigates stress & strain analysis of a thin isotropic circular plate containing a ...
the annihilating-ideal graph of a commutative ring $r$ is denoted by $ag(r)$, whose vertices are all nonzero ideals of $r$ with nonzero annihilators and two distinct vertices $i$ and $j$ are adjacent if and only if $ij=0$. in this article, we completely characterize rings $r$ when $gr(ag(r))neq 3$.
in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...
for the first time nakayama introduced qf-ring. in 1967 carl. faith and elbert a. walker showed that r is qf-ring if and only if each injective right r-module is projective if and only if each injective left r-modules is projective. in 1987 s.k.jain and s.r.lopez-permouth proved that every ring homomorphic images of r has the property that each cyclic s-module is essentialy embeddable in dire...
let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where $mathbb{p}(r)$ is...
The rings considered in this article are commutative with identity. For an ideal $I$ of a ring $R$, we denote the annihilator $R$ by $Ann(I)$. An is said to be exact annihilating if there exists non-zero $J$ such that $Ann(I) = J$ and $Ann(J) I$. set all ideals $\mathbb{EA}(R)$ $\mathbb{EA}(R)\backslash \{(0)\}$ $\mathbb{EA}(R)^{*}$. Let $\mathbb{EA}(R)^{*}\neq \emptyset$. With [Exact Annihilat...
Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating ideal if there exists r ∈ R \ {0} such that Ir = (0) and an ideal I of R is called an essential ideal if I has non-zero intersection with every other non-zero ideal of R. The sum-annihilating essential ideal graph of R, denoted by AER, is a graph whose vertex set is the set of all non-zero annihilating i...
we have devided the thesis in to five chapters. the first recollects facts from purely algebraic theory of jordan algebras and also basic properties of jb and jb* - algebras which are needed in the sequel. in the second chapter we extend to jb* - algebras, a classical result due to cleveland [8]. this result shows shows the weakness of jb* - norm topology on a jb* - algebera. in chapter three, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید