نتایج جستجو برای: catholyte
تعداد نتایج: 197 فیلتر نتایج به سال:
Bioelectrochemical systems (BES) is a platform technology that is able to realize versatile engineering functions and recover valuable resources in an energy-efficient manner. One of the potential applications of BES is to remove and recover nutrients simultaneously from nutrient-rich wastewater, such as digested manure from livestock. A four-chamber BES was developed and used in this study to ...
Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on ...
The potential of using sodium bromate as a cathodic electron acceptor in a microbial fuel cell (MFC) was determined in this study. The effects of sodium bromate concentration and initial catholyte pH on the electricity production of the MFC were investigated. The MFC performance improved with increasing sodium bromate concentration and decreasing catholyte pH. The maximum voltage output (0.538 ...
Sustainable cathode development has been a challenge for the emerging microbial fuel cell (MFC) technology. This study presents a simple catholyte called sodium percarbonate to serve as a new type of electron acceptor for MFCs. Lab scale comparisons showed sodium percarbonate cathode obtained comparable power density (9.6W/m(3)) with traditional air-cathode and potassium ferricyanide, but perca...
This study aims to construct an MFC with a photosynthetic algae cathode, which is maintained by self-capturing CO2 released from the anode and utilizing solar energy as energy input. With this system, a maximum power density of 187 mW/m(2) is generated when the anode off gas is piped into the catholyte under light illumination, which is higher than that of 21 mW/m(2) in the dark, demonstrating ...
We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with ...
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorg...
BACKGROUND Washbasin U-bends are reservoirs of microbial contamination in healthcare environments. U-Bends are constantly full of water and harbour microbial biofilm. AIM To develop an effective automated cleaning and disinfection system for U-bends using two solutions generated by electrochemical activation of brine including the disinfectant anolyte (predominantly hypochlorous acid) and cat...
Reducing agents-Enhanced electrokinetic Soil Remediation (EKSR) was performed for the removal of chromium (Cr), cobalt (Co) and nickel (Ni) from contaminated soil. The reducing agents oxalic acid and ascorbic acid were investigated under constant voltage gradient (2.0 V/cm), current changes, pH, redox potential, concentration changes and removal performance of Heavy Metals (HMs). The result...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید