نتایج جستجو برای: afm technique
تعداد نتایج: 621308 فیلتر نتایج به سال:
Atomic force microscopy (AFM) has emerged as the only technique capable of real-time imaging of the surface of a living cell at nano-resolution. Since AFM provides the advantage of directly observing living biological cells in their native environment, this technique has found many applications in pharmacology, biotechnology, microbiology, structural and molecular biology, genetics and other bi...
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the intera...
Physiological interactions between extracellular matrix (ECM) proteins and membrane integrin receptors play a crucial role in neuroplasticity in the hippocampus, a key region involved in epilepsy. The atomic force microscopy (AFM) is a cutting-edge technique to study structural and functional measurements at nanometer resolution between the AFM probe and cell surface under liquid. AFM has been ...
Atomic force microscopy (AFM) is a powerful technique which is commonly used to image surfaces at the nanoscale and single-molecule level, as well as to investigate physical properties of the sample surface using a technique known as force spectroscopy. In this chapter, we review our recent research where we used AFM to investigate physical properties of phospholipid monolayers, bilayers, and c...
Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the ...
through PeakForce QNMTM, 3) correlated nanoscale AFM-based conductivity measurements are a powerful technique for nanometer-scale electrical characterization on a wide range of samples. Traditionally, these measurements have been categorized into two classes: Conductive AFM (CAFM), which covers the higher current range (sub-nA up to μA), and Tunneling AFM (TUNA), which covers the lower current ...
Since the 1980s, atomic force microscopy (AFM) has rapidly developed into a versatile, high-resolution characterization technique, available in a variety of imaging modes. Within intermittent-contact tapping-mode, imaging bistability and sample mechanical damage continue to be two of the most important challenges faced daily by AFM users. Recently, a new double-control-loop tapping-mode imaging...
We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a com...
For surface analysis of biological molecules, atomic force microscopy (AFM) is an appealing technique combining data acquisition under physiological conditions, for example buffer solution, room temperature and ambient pressure, and high resolution. However, a key feature of life, dynamics, could not be assessed until recently because of the slowness of conventional AFM setups. Thus, for observ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید