نتایج جستجو برای: cototal domination number and connected cototal domination number
تعداد نتایج: 16885516 فیلتر نتایج به سال:
Let G (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. The domination number γ (G) is the minimum cardinality taken over all such dominating sets in G. A subset S of V is said to be a complementary connected dominating set (ccd-set) if S is a dominating set and < V-S > is connected. The chromatic number χ is the m...
We show that the total domination number of a simple connected graph is greater than the average distance of the graph minus one-half, and that this inequality is best possible. In addition, we show that the domination number of the graph is greater than two-thirds of the average distance minus one-third, and that this inequality is best possible. Although the latter inequality is a corollary t...
let $g$ be a simple graph of order $n$. the domination polynomial of $g$ is the polynomial $d(g, x)=sum_{i=gamma(g)}^{n} d(g,i) x^{i}$, where $d(g,i)$ is the number of dominating sets of $g$ of size $i$ and $gamma(g)$ is the domination number of $g$. in this paper we present some families of graphs whose domination polynomials are unimodal.
Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The dom...
This paper consists of two loosely related notes on the domination number of graphs. In the first part, we provide a new upper bound for the domination number of d-regular graphs. Our bound is the best known for d ≥ 6. In the second part, we compute the exact domination number and total domination number of certain Kneser graphs, and we provide some bounds on the domination number of other Knes...
In a graph G, a vertex dominates itself and its neighbors. A subset S of V is called a dominating set in G if every vertex in V-S is adjacent to at least one vertex in S. The minimum cardinality taken over all, the minimal double dominating set which is called Fuzzy Double Domination Number and which is denoted as ) (G fdd . A set V S is called a Triple dominating set of a graph G if every ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید