نتایج جستجو برای: ensemble averaging

تعداد نتایج: 63931  

2006
Sotiris B. Kotsiantis Dimitris Kanellopoulos Ioannis D. Zaharakis

Linear regression and regression tree models are among the most known regression models used in the machine learning community and recently many researchers have examined their sufficiency in ensembles. Although many methods of ensemble design have been proposed, there is as yet no obvious picture of which method is best. One notable successful adoption of ensemble learning is the distributed s...

Journal: :EURASIP J. Adv. Sig. Proc. 2012
Parichat Sermwuthisarn Supatana Auethavekiat Duangrat Gansawat Vorapoj Patanavijit

The compressed signal in compressed sensing (CS) may be corrupted by noise during transmission. The effect of Gaussian noise can be reduced by averaging, hence a robust reconstruction method using compressed signal ensemble from one compressed signal is proposed. The compressed signal is subsampled for L times to create the ensemble of L compressed signals. Orthogonal matching pursuit with part...

2009
LE BAO TILMANN GNEITING ERIC P. GRIMIT PETER GUTTORP ADRIAN E. RAFTERY

Wind direction is an angular variable, as opposed to weather quantities such as temperature, quantitative precipitation, or wind speed, which are linear variables. Consequently, traditional model output statistics and ensemble postprocessing methods become ineffective, or do not apply at all. This paper proposes an effective bias correction technique for wind direction forecasts from numerical ...

2015
Matthias Hagen Martin Potthast Michel Büchner Benno Stein

We reproduce three classification approaches with diverse feature sets for the task of classifying the sentiment expressed in a given tweet as either positive, neutral, or negative. The reproduced approaches are also combined in an ensemble, averaging the individual classifiers’ confidence scores for the three classes and deciding sentiment polarity based on these averages. Our experimental eva...

Journal: :Physical review letters 2008
Ariel Lubelski Igor M Sokolov Joseph Klafter

Most statistical theories of anomalous diffusion rely on ensemble-averaged quantities such as the mean squared displacement. Single molecule tracking measurements require, however, temporal averaging. We contrast the two approaches in the case of continuous-time random walks with a power-law distribution of waiting times psi(t) proportional to t{-1-alpha}, with 0<alpha<1, lacking the mean. We s...

Journal: :Journal of Machine Learning Research 2008
Hsuan-Tien Lin Ling Li

Ensemble learning algorithms such as boosting can achieve better performance by averaging over the predictions of some base hypotheses. Nevertheless, most existing algorithms are limited to combining only a finite number of hypotheses, and the generated ensemble is usually sparse. Thus, it is not clear whether we should construct an ensemble classifier with a larger or even an infinite number o...

2012
Arash Iranzad Saeed Masoudnia Fatemeh Cheraghchi Abbas Nowzari-Dalini Reza Ebrahimpour

In this paper the effect of diversity caused by Negative Correlation Learning (NCL) in the combination of neural classifier is investigated and an efficient way to improve combining performance is presented. Decision Templates and Averaging, as two non-trainable combining methods and Stacked Generalization as a trainable combiner are selected as base ensemble learner and NCL version of them are...

2003
L. Mdlazi C. J. Stander T. Marwala P. S. Heyns

The interaction of the various components in rotating machinery like gearboxes may generate excitation forces at various frequencies. These frequencies may sometimes overlap with the frequencies of the forces generated by other components in the system. Conventional vibration spectrum analysis cannot attenuate noise and spectral frequency band overlapping, which in many applications mask the ch...

Journal: :CoRR 2017
Cheng Ju Aurélien Bibaut Mark J. van der Laan

Artificial neural networks have been successfully applied to a variety of machine learning tasks, including image recognition, semantic segmentation, and machine translation. However, few studies fully investigated ensembles of artificial neural networks. In this work, we investigated multiple widely used ensemble methods, including unweighted averaging, majority voting, the Bayes Optimal Class...

2016
Wan-lu Song Wan-li Yang Zhang-qi Yin Chang-yong Chen Mang Feng

We explore controllable quantum dynamics of a hybrid system, which consists of an array of mutually coupled superconducting resonators (SRs) with each containing a nitrogen-vacancy center spin ensemble (NVE) in the presence of inhomogeneous broadening. We focus on a three-site model, which compared with the two-site case, shows more complicated and richer dynamical behavior, and displays a seri...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->