نتایج جستجو برای: stratified l generalized convergence space
تعداد نتایج: 1366274 فیلتر نتایج به سال:
Abstract. We are concerned with convergence results for fully discrete finite-element schemes suggested in [Grün, Klingbeil, ArXiv e-prints (2012), arXiv:1210.5088]. They were developed for the diffuse-interface model in [Abels, Garcke, Grün, M3AS, 2012, DOI:10.1142/S0218202511500138] which is to describe two-phase flow of immiscible, incompressible viscous fluids. We formulate general conditio...
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
the sequential $p$-convergence in a fuzzy metric space, in the sense of george and veeramani, was introduced by d. mihet as a weaker concept than convergence. here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. in such a case $m$ is called an $s$-fuzzy metric. if $(n_m,ast)$ is a fuzzy metri...
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the ...
in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.
Numerical techniques for the simulation of an ODE-PDE model for supply chains are presented. First we describe a scheme, based on Upwind and explicit Euler methods, provide corrections to maintain positivity of solutions, prove convergence and provide convergence rate. The latter is achieved via comparison with Wave Front Tracking solutions and the use of generalized tangent vectors. Different ...
In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.
Let X be a real or complex Banach space and Y be a normed linear space. Suppose that f:X → Y is a Frechet differentiable function and F:X ⇉ 2 is a set-valued mapping with closed graph. Uniform convergence of Chord method for solving generalized equation y ∈ f x + F x ...... . (∗), where y ∈ Y a parameter, is studied in the present paper. More clearly, we obtain the uniform convergence of the se...
The regularization properties of the total generalized variation (TGV) functional for the solution of linear inverse problems by means of Tikhonov regularization are studied. Considering the associated minimization problem for general symmetric tensor fields, the wellposedness is established in the space of symmetric tensor fields of bounded deformation, a generalization of the space of functio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید