نتایج جستجو برای: sivashinsky equation

تعداد نتایج: 229784  

2015
M. Schmuck

Consider the generalized Kuramoto–Sivashinsky (gKS) equation. It is a model prototype for a wide variety of physical systems, from flame-front propagation, and more general front propagation in reaction– diffusion systems, to interface motion of viscous film flows. Our aim is to develop a systematic and rigorous low-dimensional representation of the gKS equation. For this purpose, we approximat...

2008
Paolo Politi Daniel ben-Avraham

The conserved Kuramoto-Sivashinsky (CKS) equation, ∂tu = −∂xx(u+uxx+ux), has recently been derived in the context of crystal growth, and it is also strictly related to a similar equation appearing, e.g., in sand-ripple dynamics. We show that this equation can be mapped into the motion of a system of particles with attractive interactions, decaying as the inverse of their distance. Particles rep...

Journal: :Journal of Mathematical Analysis and Applications 2021

The Kuramoto-Sivashinsky equation is a fourth-order partial differential used as model for physical phenomena such plane flame propagation and phase of turbulence. inverse problem recovering the second-order coefficient from knowledge solution in final time, linear version equation, studied this article. formulated regularized nonlinear optimization problem, which local uniqueness stability are...

2014
GEORGIOS AKRIVIS

Résumé. Nous considérons l’équation de Kuramoto–Sivashinskymunie de conditions aux limites périodiques et d’une donnée initiale. Nous l’approchons en utilisant une méthode d’éléments finis de type Galerkin pour la discrétisation en espace, et un schéma de Runge–Kutta implicite pour la discrétisation en temps. Nous obtenons des estimations d’erreur optimales et discutons de la linéarisation de c...

2006
Jens D.M. Rademacher Ralf W. Wittenberg

We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatiotemporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary “viscous shocks” and related solutions. These arise in a reversible four-dimensional dynamical system as perturbed heteroclinic connection...

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید