نتایج جستجو برای: callus culture
تعداد نتایج: 281509 فیلتر نتایج به سال:
Plant tissue or cell culture keeps a significant role in micro-propagation in the plant production industry. Combination of 6-Benzylaminopurine (BAP) and other plant growth regulators like 1-Naphthaleneacetic acid (NAA) or Indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA) was used in the most of the research in tissue culture. The study was carried out to investigate the optimization of...
Ten maize lines prevalently used by breeders in the maize program were screened for their ability to form type II callus. Mature seeds were used as explant for in vitro culturing. Inbred lines showed high embryogenic response and formed friable, type II calli. And also exhibited successful plant regeneration. Various culture media compositions based on Murashige and Skoog (1962) salts thus inve...
Embryogenic callus was induced from culturing immature embryos of three barley cvs. Dissa, Golden Promise and Igri. Maximum embryogenic callus formation was achieved by culturing immature embryos on CC and LS medium containing 2 mg/litre and 2.5 mg/litre 2,4dichlorophenoxyacetic acid (2,4-D) respectively. Embryogenic calli were frequently produced distinguished somatic embryos on these medium. ...
The capacity of plants to regenerate is impressive. Plant cells can undergo somatic embryogenesis in culture, forming an embryo from a single cell or a group of somatic cells. In addition, plants exhibit de novo organogenesis, in which new organs and even entire plants are produced from other organs upon wounding. Almost as remarkable as the phenomenon of plant regeneration is how little we kno...
Diterpenoids in higher plants are biosynthesized from isoprene units obtained from two distinct pathways: the mevalonate pathway and the deoxyxylulose phosphate pathway. The metabolic partitioning of both pathways in plant species is dependent upon the type of culture. In order to study the diterpenoid biosynthesis in Croton stellatopilosus cell culture, callus culture was firstly induced from ...
Extended Abstract Introduction and Objective: Sesame is an ancient oilseed plant known for its medicinally important lignans and its high quality edible oil. ptimization of tissue culture in order to achieve high frequency regeneration is the first step for genetic transformation. the plant recalcitrant to plant tissue culture thus limiting the use of modern biotechnology for its genetic impro...
BACKGROUND Obtaining dedifferentiated cells (callus) that can regenerate into whole plants is not always feasible for many plant species. Sugar beet is known to be recalcitrant for dedifferentiation and plant regeneration. These difficulties were major obstacles for obtaining transgenic sugar beets through an Agrobacterium-mediated transformation procedure. The sugar beet line 'NK-219mm-O' is a...
Vitamins are necessary compounds synthesized and utilized in plants. In tissue culture media, vitamin addition is not always common; since the amount needed by plants is relatively unknown and varies. Vitamins, in combination with other media constituents, have been shown to have direct and indirect effects on callus growth, somatic growth, rooting, and embryonic development. For example, diffe...
Licorice plants, Glycyrrhiza glabra, G. uralensis, and G. inflata, were investigated for callus induction using Murashige and Skoog (MS) medium combined with auxins and cytokinins. After 4 weeks of culture, 33-100% of leaf or stem explants formed calli. Maximum of shoot induction from callus cultures was achieved by G. inflata stem explants cultured on MS medium supplemented with 1 mg/l alpha-n...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید