نتایج جستجو برای: nilpotent minimum algebra
تعداد نتایج: 238288 فیلتر نتایج به سال:
Let K be a field and let A be a finitely generated prime K-algebra. We generalize a result of Smith and Zhang, showing that if A is not PI and does not have a locally nilpotent ideal, then the extended centre of A has transcendence degree at most GKdim(A) − 2 over K. As a consequence, we are able to show that if A is a prime K-algebra of quadratic growth, then either the extended centre is a fi...
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
Let M be a Galois cover of a nilpotent coadjoint orbit of a complex semisimple Lie group. We define the notion of a perfect Dixmier algebra for M and show how this produces a graded (non-local) equivariant star product on M with several very nice properties. This is part of a larger program we have been developing for working out the orbit method for nilpotent orbits.
In this note we shall investigate a topological version of the problem of Kurosh: “Is any algebraic algebra locally finite?” Kaplansky’s theorem concerning the local nilpotence of nil PI-algebras is well-known. We will prove a generalization of Kaplansky’s theorem to the class of locally compact rings. We use in the proof a theorem of A. I. Shirshov [8] concerning the height of a finitely gener...
Our work is concerned with the problem on limit cycle bifurcation for a class of Z3-equivariant Lyapunov system of five degrees with three third-order nilpotent critical points which lie in a Z3-equivariant vector field. With the help of computer algebra system-MATHEMATICA, the first 5 quasiLyapunov constants are deduced. The fact of existing 12 small amplitude limit cycles created from the thr...
For a finite dimensional monomial algebra Λ over a field K we show that the Hochschild cohomology ring of Λ modulo the ideal generated by homogeneous nilpotent elements is a commutative finitely generated Kalgebra of Krull dimension at most one. This was conjectured to be true for any finite dimensional algebra over a field in [13].
We study the maximal abelian ad-nilpotent (mad) subalgebras of the domains D Morita equivalent to the first Weyl algebra. We give a complete description both of the individual mad subalgebras and of the space of all such. A surprising consequence is that this last space is independent of D . Our results generalize some classic theorems of Dixmier about the Weyl algebra.
1 Divided Power Algebra—October 31, 2016 1 1.1 Divided Power Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Extension of Divided Power Structure . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Compatible Divided Power structure . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Divided Power Algebra Associated to a Module . . . . . . . . . . . . . . . . . 5 1.5...
In this work we provide a new short proof of Carlitz’s identity for the Bernoulli numbers. Our approach is based on the ordinary generating function for the Bernoulli numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers in the context of the Zeon algebra, which comprises an associative and commutative algebra with nilpotent generators.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید