نتایج جستجو برای: arabic translation movement
تعداد نتایج: 377329 فیلتر نتایج به سال:
Machine translation between Arabic and Hebrew has so far been limited by a lack of parallel corpora, despite the political and cultural importance of this language pair. Previous work relied on manually-crafted grammars or pivoting via English, both of which are unsatisfactory for building a scalable and accurate MT system. In this work, we compare standard phrase-based and neural systems on Ar...
This paper evaluates a machine translation (MT) system based on the interlingua approach, the Universal Network Language (UNL) system, designed for Multilanguage translation. The study addresses evaluation of English-Arabic translation and aims at comparing the MT systems based on UNL against other systems. Also, it serves to analyze the development of the system understudy by comparing output ...
this paper is practically interested in the unchangeable feature of Arabic handwritten character. It presents results of comparative study achieved on certain features extraction techniques of handwritten character, based on Hough transform, Fourier transform, Wavelet transform and Gabor Filter. Obtained results show that Hough Transform and Gabor filter are insensible to the rotation and trans...
This paper describes the University of Edinburgh’s spoken language translation (SLT) and machine translation (MT) systems for the IWSLT 2014 evaluation campaign. In the SLT track, we participated in the German↔English and English→French tasks. In the MT track, we participated in the German↔English, English→French, Arabic↔English, Farsi→English, Hebrew→English, Spanish↔English, and Portuguese-Br...
We present a method for generating Colloquial Egyptian Arabic (CEA) from morphologically disambiguated Modern Standard Arabic (MSA). When used in POS tagging, this process improves the accuracy from 73.24% to 86.84% on unseen CEA text, and reduces the percentage of out-ofvocabulary words from 28.98% to 16.66%. The process holds promise for any NLP task targeting the dialectal varieties of Arabi...
Clustering words is a widely used technique in statistical natural language processing. It requires syntactic, semantic, and contextual features. Especially, semantic clustering is gaining a lot of interest. It consists in grouping a set of words expressing the same idea or sharing the same semantic properties. In this paper, we present a new method to integrate semantic classes in a Statistica...
The present work reports our attempt in developing an EnglishArabic bi-directional Machine Translation (MT) tool in the agriculture domain. It aims to achieve automated translation of expert systems. In particular, we describe the translation of knowledge base, including, prompts, responses, explanation text, and advices. In the central laboratory for agricultural expert systems, this tool is f...
In this paper we explore the contribution of the use of two Arabic morphological analyzers as preprocessing tools for statistical machine translation. Similar investigations have already been reported for morphologically rich languages like German, Turkish and Arabic. Here, we focus on the case of the Arabic language and mainly discuss the use of the G-LexAr analyzer. A preliminary experiment h...
Stemming is an essential processing step in a wide range of high level text processing applications such as information extraction, machine translation and sentiment analysis. It is used to reduce words to their stems. Many stemming algorithms have been developed for Modern Standard Arabic (MSA). Although Arabic tweets and MSA are closely related and share many characteristics, there are substa...
Arabic morphological analysis is one of the essential stages in Arabic Natural Language Processing. In this paper we present an approach for Arabic morphological analysis. This approach is based on Arabic morphological automaton (AMAUT). The proposed technique uses a morphological database realized using XMODEL language. Arabic morphology represents a special type of morphological systems becau...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید