نتایج جستجو برای: cototal domination number and connected cototal domination number
تعداد نتایج: 16885516 فیلتر نتایج به سال:
Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex, and the placement of one of these on an adjacent vertex. We introduce the notion of domination cover pebbling, obtained by combining graph cover pebbling ([2]) with the theory of domination in graphs ([3]). The domination cover pebbling number, ψ(G)...
The weakly connected domination subdivision number sdγw(G) of a connected graph G is the minimum number of edges which must be subdivided (where each edge can be subdivided at most once) in order to increase the weakly connected domination number. The graph is strongγw-subdivisible if for each edge uv ∈ E(G) we have γw(Guv) > γw(G), where Guv is a graph G with subdivided edge uv. The graph is s...
It is known that the removal of an edge from a graph G cannot decrease a domination number γ(G) and can increase it by at most one. Thus we can write that γ(G) ≤ γ(G − e) ≤ γ(G) + 1 when an arbitrary edge e is removed. Here we present similar inequalities for the weakly connected domination number γw and the connected domination number γc, i.e., we show that γw(G) ≤ γw(G− e) ≤ γw(G) + 1 and γc(...
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class), where the vertices in one class are colored red and those in the other class are colored blue. Let F be a 2-stratified graph rooted at some blue vertex v. An F -coloring of a graph is a red-blue coloring of the vertices of G in which every blue vertex v belongs to a copy of...
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
for any $k in mathbb{n}$, the $k$-subdivision of graph $g$ is a simple graph $g^{frac{1}{k}}$, which is constructed by replacing each edge of $g$ with a path of length $k$. in [moharram n. iradmusa, on colorings of graph fractional powers, discrete math., (310) 2010, no. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $g$ has been introduced as a fractional power of $g$, denoted by ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید