Let g be a Lie algebra, J an endomorphism of g such that J = −I , and let g be the ieigenspace of J in g := g ⊗R C. When g is a complex subalgebra we say that J is integrable, when g is abelian we say that J is abelian and when g is a complex ideal we say that J is bi-invariant. We note that a complex structure on a Lie algebra cannot be both abelian and biinvariant, unless the Lie bracket is t...