Yang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order
نویسندگان
چکیده مقاله:
This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems for the local fractional integral equations.
منابع مشابه
The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملthe analytical solutions for volterra integro-differential equations within local fractional operators by yang-laplace transform
in this paper, we apply the local fractional laplace transform method (or yang-laplace transform) on volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. the iteration procedure is based on local fractional derivative operators. this approach provides us with a convenient way to find a solution ...
متن کاملNumerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method
متن کامل
Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملLaplace Transform of Fractional Order Differential Equations
In this article, we show that Laplace transform can be applied to fractional system. To this end, solutions of linear fractional-order equations are first derived by a direct method, without using Laplace transform. Then the solutions of fractional-order differential equations are estimated by employing Gronwall and Hölder inequalities. They are showed be to of exponential order, which are nece...
متن کاملSolving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method
In this paper, we apply the differential transformation method to high-order nonlinear VolterraFredholm integro-differential equations with separable kernels. Some different examples are considered the results of these examples indicated that the procedure of the differential transformation method is simple and effective, and could provide an accurate approximate solution or exact solution.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 2
صفحات 203- 214
تاریخ انتشار 2018-12-25
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023