Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

نویسندگان

  • Armando Ciancio Department of Biomedical Sciences and Morphological and Functional Imaging‎,‎ University of Messina‎, ‎via Consolare Valeria 1‎, ‎98125 MESSINA‎, ‎Italy
  • Fakhrodin Mohammadi Department of Mathematics‎, ‎University of ‎Hormozgan‎, ‎P‎. ‎O‎. ‎Box 3995‎, ‎Bandarabbas‎, ‎Iran
چکیده مقاله:

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented for driving approximate solution FIDEs with a weakly singular kernel‎. ‎Error estimates of all proposed numerical methods are given to test the convergence and accuracy of the method‎. ‎A comparative study of accuracy and computational time for the presented techniques is given‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

Two Numerical Algorithms for Solving a Partial Integro- Differential Equation with a Weakly Singular Kernel

Two numerical algorithms based on variational iteration and decomposition methods are developed to solve a linear partial integro-differential equation with a weakly singular kernel arising from viscoelasticity. In addition, analytic solution is re-derived by using the variational iteration method and decomposition method.

متن کامل

Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel

In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The  Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel

In this paper, numerical solutions of the linear and nonlinear fractional integrodifferential equations with weakly singular kernel where fractional derivatives are considered in the Caputo sense, have been obtained by Legendre wavelets method. The block pulse functions and their properties are employed to derive a general procedure for forming the operational matrix of fractional integration f...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  53- 73

تاریخ انتشار 2017-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023