Using Neural Networks with Limited Data to Estimate Manufacturing Cost

نویسندگان

  • Gary R. Weckman Department of Industrial and Systems Engineering, Ohio University, Athens, Ohio, USA
  • Harry S. Whiting Department of Industrial and Systems Engineering, Ohio University, Athens, Ohio, USA
  • Helmut W. Paschold School of Public Health Sciences and Professions, Ohio University, Athens, Ohio, USA
  • John D. Dowler Department of Industrial and Systems Engineering, Ohio University, Athens, Ohio, USA
  • William A. Young Department of Industrial and Systems Engineering, Ohio University, Athens, Ohio, USA
چکیده مقاله:

Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-creation were implemented. Sensitivity analysis was used to gain an understanding of the underlying functions used by the neural network when generating the cost estimate. Even with limited data, the neural network is able produced a superior cost estimate in a fraction of the time required by the current cost estimation process. When compared to linear regression, the neural networks produces a 30% higher R value for shafts and 90% higher R value for cases. Compared to the current cost estimation method, the neural network produces a cost estimate with a 4.7% higher R value for shafts and a 5% higher R value for cases. This significant improvement over linear regression can be attributed to the neural network ability to handle complex data sets with many inputs and few data points.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Manufacturing cell formation with production data using neural networks

Batch type production strategies need adoption of cellular manufacturing (CM) in order to improve operational effectiveness by reducing manufacturing lead time and costs related to inventory and material handling. CM necessitates that parts are to be grouped into part families based on their similarities in manufacturing and design attributes. Then, machines are allocated into machine cells to ...

متن کامل

Using neural network to estimate weibull parameters

As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...

متن کامل

Using neural networks to predict road roughness

When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...

متن کامل

Using Neural Networks to Estimate Constant Quality House Price Indices

This paper extends work in the field of Constant Quality Price Indexing by using Neural Networks to estimate the model. A series of housing data sets is used to develop constant quality price indices using traditional econometric techniques and using neural networks incorporating genetic algorithms. The analysis indicates that neural networks are a real alternative to the econometric methods. I...

متن کامل

Use of artificial neural networks to estimate installation damage of nonwoven geotextiles

This paper presents a feed forward back-propagation neural network model to predict the retained tensile strength and design chart in order to estimation of the strength reduction factors of nonwoven geotextiles due to installation process. A database of 34 full-scale field tests were utilized to train, validate and test the developed neural network and regression model. The results show that t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 4

صفحات  257- 274

تاریخ انتشار 2010-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023