Twin signed total Roman domatic numbers in digraphs

نویسنده

چکیده مقاله:

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ with$f(v)=f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinct twin signed total Romandominating functions on $D$ with the property that $sum_{i=1}^df_i(v)le 1$for each $vin V(D)$, is called a twin signed total Roman dominating family (offunctions) on $D$. The maximum number of functions in a twin signed total Romandominating family on $D$ is the twin signed total Roman domatic number of $D$,denoted by $d_{stR}^*(D)$. In this paper, we initiate the study of the twinsigned total Roman domatic number in digraphs and we present some sharp bounds on$d_{stR}^*(D)$. In addition, we determine the twin signed total Roman domatic numberof some classes of digraphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signed k-domatic numbers of digraphs

Let D be a finite and simple digraph with vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N−[v] f(x) ≥ k for each v ∈ V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set {f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property tha...

متن کامل

Signed domination and signed domatic numbers of digraphs

Let D be a finite and simple digraph with the vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If∑ x∈N[v] f(x) ≥ 1 for each v ∈ V (D), where N[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V (D)) is called the weight w(f) of f . The minimum of weights w(f), taken over all signed dominating function...

متن کامل

The signed Roman k-domatic number of digraphs

Let k ≥ 1 be an integer. A signed Roman k-dominating function on a digraph D is a function f : V (D) −→ {−1, 1, 2} such that ∑x∈N−[v] f(x) ≥ k for every v ∈ V (D), where N−[v] consists of v and all in-neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an in-neighbor w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on D with the pro...

متن کامل

Signed total (j, k)-domatic numbers of graphs

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ j for each x...

متن کامل

On the signed total domatic numbers of directed graphs

Let D = (V,A) be a finite simple directed graph (shortly digraph) in which dD(v) ≥ 1 for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total dominating function if ∑ u∈N−(v) f(u) ≥ 1 for each vertex v ∈ V . A set {f1, f2, . . . , fd} of signed total dominating functions on D with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (D), is called a signed total dominating family (of f...

متن کامل

Nonnegative signed total Roman domination in graphs

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  17- 26

تاریخ انتشار 2021-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023