TRIANGULAR FUZZY MATRICES

نویسندگان

  • Amiya Kumar l Shyama Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore - 721102, West Bengal, India
  • Madhumangal Pal Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore - 721102, West Bengal, India
چکیده مقاله:

In this paper, some elementary operations on triangular fuzzynumbers (TFNs) are defined. We also define some operations on triangularfuzzy matrices (TFMs) such as trace and triangular fuzzy determinant(TFD). Using elementary operations, some important properties of TFMs arepresented. The concept of adjoints on TFM is discussed and some of theirproperties are. Some special types of TFMs (e.g. pure and fuzzy triangular,symmetric, pure and fuzzy skew-symmetric, singular, semi-singular, constant)are defined and a number of properties of these TFMs are presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

triangular fuzzy matrices

in this paper, some elementary operations on triangular fuzzynumbers (tfns) are defined. we also define some operations on triangularfuzzy matrices (tfms) such as trace and triangular fuzzy determinant(tfd). using elementary operations, some important properties of tfms arepresented. the concept of adjoints on tfm is discussed and some of theirproperties are. some special types of tfms (e.g. pu...

متن کامل

Multiplicative Functional on Upper Triangular Fuzzy Matrices

In this paper, for an arbitrary multiplicative functional f from the set of all upper triangular fuzzy matrices to the fuzzy algebra, we prove that there exist a multiplicative functional F and a functional G from the fuzzy algebra to the fuzzy algebra such that the image of an upper triangular fuzzy matrix under f can be represented as the product of all the images of its main diagonal element...

متن کامل

cocharacters of upper triangular matrices

we survey some recent results on cocharacters of upper triangular matrices. in particular, we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results; we show di erent tech-niques in order to solve similar problems.

متن کامل

GENERALIZED REGULAR FUZZY MATRICES

In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.

متن کامل

Customizable triangular factorizations of matrices

Customizable triangular factorizations of matrices find their applications in computer graphics and lossless transform coding. In this paper, we prove that any N ×N nonsingular matrix A can be factorized into 3 triangular matrices, A = PLUS, where P is a permutation matrix, L is a unit lower triangular matrix, U is an upper triangular matrix of which the diagonal entries are customizable and ca...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  75- 87

تاریخ انتشار 2007-04-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023